Solving Jigsaw Puzzles with Eroded Boundaries Using GAN Inpainting

Speaker:
Dov Bridger, M.Sc. Thesis Seminar
Date:
Tuesday, 13.8.2019, 14:00
Place:
Room 601 Taub Bld.
Advisor:
Prof. A. Tal

Jigsaw puzzle solving is an intriguing problem, having a wide variety of applications in archaeology, biology, document restoration and others. This paper focuses on a specific variant of the problem - solving puzzles with eroded boundaries. Such erosion makes the problem extremely difficult, since most existing solvers utilize solely the information at the boundaries. Nevertheless, this variant is important since erosion and missing data often occur at the boundaries. This paper introduces a novel approach to solve the problem. The key idea is to inpaint the eroded boundaries between puzzle pieces and later leverage the quality of the inpainted area to classify a pair of pieces as "neighbors or not". An interesting feature of our architecture is that the same GAN discriminator is used for both inpainting and classification; training of the second task is simply a continuation of the training of the first, beginning from the point it left off. We show that our approach is beneficial and that our results outperform those of the state-of-the-art.

Back to the index of events