Skip to content (access key 's')
Logo of Technion
Logo of CS Department


Shape correspondence by aligning scale-invariant LBO eigenfunctions
event speaker icon
Amit Bracha, M.Sc. Thesis Seminar
event date icon
Tuesday, 16.3.2021, 11:30
event location icon
Zoom Lecture: 3615145651
For password to lecture, please contact:
event speaker icon
Advisor:  Prof. R. Kimmel
When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. In this talk, we will propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. We will show that estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.
[Back to the index of events]