Skip to content (access key 's')
Logo of Technion
Logo of CS Department


Complex Event Forecasting in Multivariate Time Series
event speaker icon
Dolev Elbaz, M.Sc. Thesis Seminar
event date icon
Sunday, 11.4.2021, 11:00
event location icon
Zoom Lecture: 996692671429
For password to lecture, please contact:
event speaker icon
Advisor:  Prof. A. Schuster
Time-series forecasting is widely employed in a variety of domains to predict future trends, tendencies, and properties of the data. However, predicting simple data items is often not enough. Many applications are characterized by a requirement to simultaneously monitor hundreds or even thousands of data series and could benefit from recognizing future occurrences of composite patterns in advance. Despite the rising need for such functionality, this problem received limited attention in recent years. In this work, we formally define and study the problem of predicting patterns over basic data items in multivariate time-series data. Our proposed solution utilizes a combination of a deep learning time-series forecasting model and a complex event processing (CEP) evaluation tree. We also apply attention mechanisms to improve the performance of the forecasting models. We devise a system capable of forecasting composite patterns in a multivariate time-series using a variety of models and suitable for multiple types of data. Our extensive experimental evaluation on three real-world datasets demonstrates the effectiveness and accuracy of our approach.
[Back to the index of events]