דלג לתוכן (מקש קיצור 's')
Logo of Technion
Logo of CS Department
אירועים

קולוקוויום וסמינרים

כדי להצטרף לרשימת תפוצה של קולוקוויום מדעי המחשב, אנא בקר בדף מנויים של הרשימה.
Computer Science events calendar in HTTP ICS format for of Google calendars, and for Outlook.
Academic Calendar at Technion site.

קולוקוויום וסמינרים בקרוב

  • יום פתוח לתארים מתקדמים במדעי המחשב
    event date icon
    יום רביעי, 21.4.2021, 12:30
    event location icon
    אירוע באמצעות הזום: הרשמה
    היום הפתוח במדעי המחשב בטכניון מזמין בוגרי תואר ראשון מצטיינים מכל האוניברסיטאות להירשם ללימודי תארים מתקדמים בפקולטה למדעי המחשב בסמסטר חורף תשפ"ב. האירוע יתקיים ביום ד', 21 באפריל, 2021, בין השעות 12:30-13:45 באמצעות ZOOM: פגישה מס' 96244586510. תוכנית היום תכלול סקירה על מהלך לימודי תארים מתקדמים, על המחקר ועל החיים בפקולטה למדעי המחשב בטכניון: 12:30-12:40 דבר דיקן הפקולטה, פרופ' דן גייגר 12:40-12:55 דבר סגן הדיקן לתארים מתקדמים, פרופ' גיל ברקת 12:55-13:20 ד"ר קירה רדינסקי, יו"ר דיאגנוסטיק רובוטיקס: Digital Healthcare - The Next Frontier 13:20-13:30 מר גיל בן שחר וגב' סתיו פרלה (דוקטורנטים): החיים בפקולטה למדעי המחשב 13:30 שאלות ותשובות להשתתפות באירוע נא להירשם מראש. פרטים נוספים ותוכניתCS Open Day for Graduate Studies
  • PCPs and Cryptography: New Limitations and Opportunities
    event speaker icon
    לירון ברונפמן, הרצאה סמינריונית למגיסטר
    event date icon
    יום רביעי, 21.4.2021, 14:00
    event location icon
    Zoom Lecture: 5480679598
    For password to lecture, please contact: br@cs.technion.ac.il
    event speaker icon
    מנחה:  Dr. Ron Rothblum
    The connection between information theoretic proof systems and cryptography has been extremely fruitful. In this thesis, we further explore this connection, showing both new limitations and opportunities. In the talk we will focus on the new opportunities and show constructions of computational relaxations of objects that are known to be essentially impossible to achieve information theoretically. In particular, we show cryptographic analogs of: (1) PCPs whose length is proportional to the witness size. (2) Instance compression, which allows, for example, to efficiently and generically reduce the size of a given formula on m clauses and n variables (with m >>n) to a formula of size poly(n,log(m)). We will discuss the applicability of these relaxations and raise questions for future research.
  • סדנת git במדעי המחשב
    event date icon
    יום רביעי, 21.4.2021, 17:30
    event location icon
    אירוע באמצעות הזום: הרשמה
    הנכם מוזמנים להשתתף בסדנה טכנולוגית מקוונת בהנחיית אביב רוזנברג, תלמיד תואר שלישי ומתרגל בפקולטה, על ניהול גרסאות עם git: איך להפסיק לפחד משינוי קוד, אשר תתקיים ביום רביעי, 21 באפריל, 2021, 17:30. פרטים נוספים על תוכנית הסדנה והרשמה מראש.
  • Geometrical Challenges in Treating Irregular Heart Beat
    event speaker icon
    Fady Massarwi (CS, Technion)
    event date icon
    יום שני, 26.4.2021, 11:30
    event location icon
    Zoom Lecture: 91344952941 For password to lecture please contact inbalb@cs.technion.ac.il
    This talk presents some of the geometrical aspects involved in treating irregular heart beat rhythm (Arrythmia) using Carto 3 System. Carto 3 is a product of Biosense-Webster, a global leader in the science of diagnosing and treating heart rhythm disorders. CARTO 3 System enables accurate visualization of multiple catheters in a patient’s heart and pinpoints exact location/orientation of a catheter. During arrythmia procedure, a 3D electro-anatomical reconstruction of the heart is built and color coded with the electrical activity in the heart. In this talk, we’ll introduce mesh processing algorithms and discuss industrial challenges encountered in the process of building and coloring geometrical reconstructions of the heart. Interested parties ca email gershon@cs.technion.ac.il or mirela@cs.technion.ac.il for the zoom link.
  • Maximizing Throughput in Flow Shop Real-time Scheduling
    event speaker icon
    ליאור בן-ימין, הרצאה סמינריונית למגיסטר
    event date icon
    יום חמישי, 29.4.2021, 14:30
    event location icon
    Zoom Lecture: 93508538152
    For password to lecture, please contact: lior.b@cs.technion.ac.il
    event speaker icon
    מנחה:  Prof. H. Shachnai
    We consider scheduling real-time jobs in the classic flow shop model. The input is a set of n jobs, each consisting of m segments to be processed on m machines in the specified order. Each job also has a release time, a due date, and a weight. The objective is to maximize the throughput, i.e., to find a subset of the jobs that have the maximum total weight and can complete processing on the m machines within their time windows. This problem has numerous real-life applications ranging from manufacturing to cloud and embedded computing platforms, already in the special case where m=2. Previous work in the flow shop model has focused on makespan, flow time, or tardiness objectives. However, little is known for the flow shop model in the real-time setting. In this work, we give the first nontrivial results for this problem and present a pseudo-polynomial time (2m+1)-approximation algorithm for throughput maximization on $m \geq 2$ machines, where m is a constant. This ratio is essentially tight due to a known hardness of approximation result. For the two-machine case, we give a polynomial-time $9+\eps$-approximation algorithms, where $\eps = O(1/n)$. Better bounds are derived for some restricted subclasses of inputs with two machines, as well as the no-wait flow shop model.
  • Computational inference of cancer metabolic alterations for early diagnosis and treatment
    event speaker icon
    שובל לגזיאל, הרצאה סמינריונית לדוקטורט
    event date icon
    יום חמישי, 29.4.2021, 15:30
    event location icon
    Zoom Lecture: 93506187830
    For password to lecture, please contact: shovall@cs.technion.ac.il
    event speaker icon
    מנחה:  Prof. Tomer Shlomi
    Metabolic reprogramming is a hallmark of cancer, providing novel means to selectively target cancer cells, for precision medicine and early diagnosis. Understanding tumor-specific metabolic alterations facilitates the identification of induced dependency on specific enzymes whose inhibition selectively targets cancer cells. In addition, the altered metabolic activity of cancer cells, involving the consumption of metabolic nutrients and the secretion of byproducts from the tumor leaves metabolic traces that can be utilized for diagnostic purposes. Here, we explored two main directions based on the metabolic reprogramming of cancer: (1) construction of models suggesting potential metabolic mechanisms for the dependency on metabolic genes, (2) early cancer diagnosis based on fast and sensitive metabolomics of blood samples. Genome-wide RNAi and CRISPR screens are powerful tools for identifying genes essential for cancer proliferation and survival. Previous works integrated loss-of-function screens with cancer cell line molecular characterization to reveal the underlying mechanisms for cancer dependence on specific genes; however, explaining cancer dependence on metabolic genes was shown to be especially challenging. Considering that metabolic activity is highly dependent on nutrient availability, analyzing publicly available omics datasets, we have shown that utilizing different media types for culturing cancer cell lines has a major effect on intracellular metabolite levels and metabolic gene dependencies – calling for future analyses of published omics datasets such as that of the CCLE to account for this confounding effect. Considering culture media as well as accounting for molecular features of functionally related metabolic enzymes in a metabolic network enabled us to improve our understanding of cancer cell line-specific dependence on metabolic genes using machine learning models. Early diagnosis of cancer greatly increases the chances for successful treatment of cancer. Major ongoing efforts are made to develop highly sensitive, cost-effective screening methods via a variety of molecular biomarkers. Mass spectrometry based metabolomics is a widely used approach in biomedical research. However, current methods coupling mass spectrometry with chromatography are time-consuming and not suitable for high-throughput analysis of thousands of samples. An alternative approach is flow-injection mass spectrometry (FI-MS) in which samples are directly injected into the ionization source. However, it was previously shown to provide a reduced sensitivity and reproducibility. We developed two rapid mass-spectrometry based metabolomics methods, FI-MS based and LC-MS based, enabling a reproducible detection and quantitation of thousands of metabolites within less than one minute per sample. The developed approach facilitates high-throughput metabolomics for a variety of applications, including biomarker discovery and functional genomics screens. Applying the developed metabolomics method to hundreds of serum samples from cancer patients and healthy controls, utilizing machine learning techniques, we have demonstrated the potential and applicability of this approach for population-wide cancer screening.