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A Plurality of Sparse Representations Is Better Than
the Sparsest One Alone
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Abstract—Cleaning of noise from signals is a classical and long-
studied problem in signal processing. Algorithms for this task nec-
essarily rely on an a priori knowledge about the signal characteris-
tics, along with information about the noise properties. For signals
that admit sparse representations over a known dictionary, a com-
monly used denoising technique is to seek the sparsest represen-
tation that synthesizes a signal close enough to the corrupted one.
As this problem is too complex in general, approximation methods,
such as greedy pursuit algorithms, are often employed.

In this line of reasoning, we are led to believe that detection of the
sparsest representation is key in the success of the denoising goal.
Does this mean that other competitive and slightly inferior sparse
representations are meaningless? Suppose we are served with a
group of competing sparse representations, each claiming to ex-
plain the signal differently. Can those be fused somehow to lead to
a better result? Surprisingly, the answer to this question is posi-
tive; merging these representations can form a more accurate (in
the mean-squared-error (MSE) sense), yet dense, estimate of the
original signal even when the latter is known to be sparse.

In this paper, we demonstrate this behavior, propose a practical
way to generate such a collection of representations by random-
izing the Orthogonal Matching Pursuit (OMP) algorithm, and pro-
duce a clear analytical justification for the superiority of the as-
sociated Randomized OMP (RandOMP) algorithm. We show that
while the maximum a posteriori probability (MAP) estimator aims
to find and use the sparsest representation, the minimum mean-
squared-error (MMSE) estimator leads to a fusion of representa-
tions to form its result. Thus, working with an appropriate mix-
ture of candidate representations, we are surpassing the MAP and
tending towards the MMSE estimate, and thereby getting a far
more accurate estimation in terms of the expected ��-norm error.

Index Terms—Bayesian, maximum a posteriori probability
(MAP), minimum-mean-squared error (MMSE), sparse represen-
tations.

I. INTRODUCTION

A. Denoising in General

C LEANING of additive noise from signals is a classical
and long-studied problem in signal processing. This task,

known as denoising, considers a given measurement signal
obtained from the clean signal by a contamination of

the form . In this paper, we shall restrict our discussion
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to noise vectors , assumed to be zero mean independent
and identically distributed (i.i.d.) Gaussian, with entries drawn
at random from the normal distribution . The denoising
goal is to recover from .

In order to design an effective denoising algorithm, we must
have at our disposal two pieces of information: The first is a
knowledge about the noise characteristics, as described above.
Along with it, we must also introduce some knowledge about the
class of signals that belongs to. Only with these two can one
design a scheme to decompose into its original components,

and . There are numerous algorithms for denoising, as there
are numerous ways to describe the a priori knowledge about the
signal characteristics. Among these, a recently emerging model
for signals that attracts much attention is one that relies on sparse
and redundant representations [2], [20]. This model will be the
focus of the work presented here.

B. Sparse and Redundant Representations

A signal is said to have a sparse representation over a known
dictionary (we typically assume that , im-
plying that this is a redundant representation), if there exists a
sparse vector such that . The vector is said
to be the representation of . Referring to the columns of as
prototype signals or atoms, describes how to construct from
a few such atoms by a linear combination. The representation is
sparse—the number of non-zeros in it, , is expected
to be much smaller than . Also, this is a redundant represen-
tation—it is longer than the original signal it represents. In this
paper, we consider the family of signals that admit sparse rep-
resentations over a known dictionary and discuss ways to de-
noise them. Note that at this stage we do not provide a full and
exact definition of this signal family (e.g., we do not specify
how the representations are generated)—such a definition will
follow at a later stage in the paper, where a rigorous analysis is
pursued.

Assuming that with a sparse representation , how
can we denoise a corrupted version of it, ? A commonly used
denoising technique is to seek the sparsest representation that
synthesizes a signal close enough to the corrupted one [2],
[10]–[14], [17], [18], [21], [28], [29]. Put formally, one way to
define our task is given by

(1)

The first penalty directs the minimization task towards the
sparsest possible representation, exploiting our a priori knowl-
edge about the formation of the signal. The second penalty
manifests our knowledge about the noise being white and
Gaussian. This overall expression is inversely proportional to
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the posterior probability, , and as such, its minimization
forms the maximum a posteriori probability (MAP) estimate
[2]. The parameter should be chosen based on and the fine
details that model how the signals’ representations are gener-
ated. As remarked above, there are other ways to formulate
our goal—for example, we could replace one of the penalties
with a constraint, if their size is known. Once is found, the
denoising result is obtained by .

The problem posed in (1) is too complex in general, re-
quiring a combinatorial search that explores all possible sparse
supports [22]. Approximation methods are therefore often
employed, with the understanding that their result may deviate
from the true solution. One such approximation technique is
the Orthogonal Matching Pursuit (OMP), a greedy algorithm
that accumulates one atom at a time in forming , aiming at
each step to minimize the representation error
[2], [4], [6], [7], [21], [23], [27]. When this error falls below
some predetermined threshold, or when the number of atoms
reaches a destination value, this process stops. While crude,
this technique works very fast and can guarantee near-optimal
results in some cases.

How good is the denoising obtained by the above approach?
Past work provides some preliminary, both theoretical and em-
pirical, answers to this and related questions [2], [9]–[11], [13],
[14], [17], [18], [28], [29]. Most of this work concentrates on
the accuracy with which one can approximate the true represen-
tation (rather than the signal itself), adopting a worst case point
of view. Indeed, the only work that targets the theoretical ques-
tion of denoising performance head-on is reported in [13], [14],
providing asymptotic assessments of the denoising performance
for very low and very high noise powers, assuming that the orig-
inal combinatorial problem can be solved exactly.

C. This Paper

In the above line of reasoning, we are led to believe that detec-
tion of the sparsest representation is key in the success of the de-
noising goal. Does this mean that other, competitive yet slightly
inferior, sparse representations are meaningless? This question
is critical, especially due to the often encountered cases where
OMP (and other approximation algorithms) fails to find the truly
sparsest representation.

Furthermore, past analysis of approximation algorithms indi-
cates that a measure of coherence of the dictionary can predict
the tendency of these methods to fail, and this is especially true
when the sparsity of the target representation is rather mild [2],
[10], [11], [17], [18], [27], [28]. The coherence of a dictionary is
defined through the worst pair of atoms exhibiting maximal cor-
relation. If this value is high, it implies that these atoms tend to
confuse and mislead any solver. Thus, noncoherent dictionaries
necessarily lead to wrong solutions in many cases; are these to
be considered as complete failures?

In fact, we should ask a more general question: Suppose we
are served with a group of competing sparse representations,
each claiming to explain the signal differently. Can those be
fused somehow to lead to a better result? Surprisingly, the an-
swer to this question is positive; these representations can defi-
nitely be merged to form a more accurate estimate of the original
signal. This means that even when the dictionary is noncoherent,

one can obtain a reasonable denoising, by exploiting this mix-
ture of representations. Why is this true? How can we exploit
this? In this paper, we aim to show that there is life beyond the
sparsest representation. More specifically:

• We propose a practical way to generate a set of sparse rep-
resentations for a given signal by randomizing the OMP
algorithm. This technique samples from the set of sparse
solutions that approximate .

• We demonstrate the gain in using such a set of represen-
tations through a preliminary experiment that fuses these
results by a plain averaging; and most important of all,

• we provide a clear explanation for the origin of this strange
phenomenon. We develop analytical expressions for the
MAP and the minimum mean-squared-error (MMSE) es-
timators for the model discussed, and show that while the
MAP estimator aims to find and use the sparsest represen-
tation, the MMSE estimator requires a fusion of a collec-
tion of representations to form its result. Thus, working
with a set of candidate representations, we are surpassing
the MAP and tending towards the MMSE estimate, and
thereby getting a more accurate estimation in the average

error sense.
• Based on the above rigorous analysis, we also provide clear

expressions that predict the mean-square error (MSE) of
the various estimators, and thus obtain a good prediction
for the denoising performance of the OMP and its random-
ized version.

The idea to migrate from the MAP to the MMSE has been re-
cently studied elsewhere [19], [25], [26]. Our work differs from
these earlier contributions in its motivation, in the objective it
sets, and in the eventual numerical approximation algorithm
proposed. Our work’s origin is different as it emerges from the
observation that several different sparse representations convey
an interesting story on the signal to be recovered, and this is re-
flected in the structure of this paper. The MMSE estimator we
develop targets the signal , while the above works focus on es-
timation of the representation . Finally, and most importantly,
our randomized greedy algorithm is very different from the de-
terministic techniques explored in [19], [25], [26].

This paper is organized as follows. In Section II, we build a
case for the use of several sparse representations, leaning on in-
tuition and some preliminary experiments that suggests that this
idea is worth a closer look. Section III contains the analytic part
of this paper, which develops the MAP and the MMSE exact es-
timators and their expected errors, showing how they relate to
the use of several representations. We conclude in Section IV by
highlighting the main contribution of this paper, and drawing at-
tention to important open questions to which our analysis points.

II. THE KEY IDEA—A MIXTURE OF REPRESENTATIONS

In this section, we build a case for the use of several sparse
representations. First, we motivate this by drawing intuition
from example-based modeling, where several approximations
of the corrupted data are used to denoise it. Armed with the
desire to generate a set of sparse representations, we present
the Randomized OMP (RandOMP) algorithm that generates a
group of competitive representations for a given signal. Finally,
we show that this concept works quite well in practice and
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Fig. 1. The OMP— a greedy algorithm.

provides a benefit over the use of a single representation. In the
next section, we provide a more rigorous explanation of this
phenomenon.

A. Why Bother? Some Hand-Waving

Why should we consider the use of more than just one rep-
resentation? One possible reason is the fact that a single repre-
sentation we happen to find may be the wrong one, due to the
tendency of pursuit techniques to fail from time to time. This
suggests that one should possibly seek several representations
and choose the best one in some sense, assuming that this is
possible. In doing so, we are still in the realm of the MAP es-
timator, aiming to improve the OMP chances to approximate
better the desired single-representation solution of (1). As we
shall see next, we aim to achieve far more than just that when
using a set of representations.

A second and more relevant reason to consider a mixture of
representations is an intriguing relation between our model and
direct example-based techniques. Our model assumes that sig-
nals in the family we handle can be represented as multiplica-
tions of the dictionary by sparse vectors. What if we allow
to be more redundant by letting the number of its columns to
grow? The general tendency we expect to see is a decrease in
the number of non-zeros required in the representations, that is,
they become sparser. At the extreme, when the dictionary con-
tains columns, reflecting many possible instances of
signals, the required sparsity should tend towards , since
almost every original signal is available as an atom (possibly up
to a scale).

This extreme case is exactly the one practiced in direct
example-based methods [1], [8], [15], [16], [24]. Suppose we
are given many instances of noisy signals . We refer to
those as our training data, and form a dictionary by simply
concatenating them as our atoms. When aiming to denoise a
newly obtained signal , an example-based denoising algorithm
suggests that we seek in a set of nearby atoms. Each such
neighbor found is an extremely sparse representation with

cardinality , and with the coefficient being as well. We
may consider a slightly more general search for neighbors that
allows for scaling, which enriches the span of the dictionary
signal set.

Using one neighbor atom only as our suggested solution im-
plies that we replace the noise in by the noise in this atom,
rather than cleaning it, which is, of course, useless. Suppose that
in the set of neighbors chosen we have managed to find instances
of the same original signal with different realizations of noise.
In such a case, averaging these solutions leads to an attenuation
of the additive noise. Thus, a collection of very sparse represen-
tations joins forces to produce a better estimate. Indeed, a closer
look at the Non-Local-Means (NLM) algorithm [3] reveals that
this is the very same method employed, where the dictionary
used consists of patch examples extracted from the neighbor-
hood of the sample to be cleaned.

If the above is true for the extreme case, why should it not be
relevant for the lower redundancy case as well? The rationale is
that each sparse representation found recommends its own way
of denoising, and their fusion may lead to a better overall noise
removal effect. Could this be true? In order to explore this idea,
we must start by finding a practical way to generate a set of
candidate representations, which is our next topic.

B. RandOMP

Here is a clear definition of our goal: Given a dictionary
and a signal , we aim to find a group of sparse representations

, such that each satisfies , and all aim to be as
sparse as possible yet different from each other. Alternatively,
we may desire to find this set such that each has the same pre-
specified number of non-zeros, , and all aim to get residuals,

, that are as low as possible. We shall work in this
subsection with the former option, since it is more relevant to
denoising in cases when the noise power is fixed and known, as
in the case studied here.

Fig. 1 presents the OMP algorithm with a stopping rule that
depends on the residual energy [2], [4], [6], [7], [21], [23]. At
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Fig. 2. RandOMP—generating random sparse representations.

each iteration, the set is computed, whose th term
indicates the error that would remain if atom were added to
the current solution. The atom chosen is the one yielding the
smallest error. Note that if there are several candidate atoms
that show a relatively small residual energy, the smallest one
is chosen regardless of the proximity of the others to it. This
brings us naturally to the randomization approach we intend to
apply.

In order to use this algorithm to generate a set of (probably)
distinct sparse representations, all that we need to do is to
randomize the choice of the next atom to be added. For ex-
ample, rather than choose the atom that minimizes , we can
choose it at random with a probability inversely proportional to
these error values, or proportional to (since

). For reasons to be ex-
plained in detail in the next section, the specific way we choose
to draw the next atom is with probability linearly proportional to

, with

(2)

Here is the variance of the nonzero entries of the representa-
tion of the original signal.

By running this algorithm times, this randomization leads
to solutions , as desired. Common to all these repre-
sentations are the facts that (i) their representation error

is below due to the stopping rule enforced; and (ii) all of
them tend to be relatively sparse due to the greedy nature of this
algorithm that aims to decrease the residual energy, giving pref-
erence to those atoms that serve this goal better. Fig. 2 presents
this algorithm.

We demonstrate the behavior of this algorithm by performing
the following simple test. First, we build a random dictionary

of size by drawing its entries at random from
the normal distribution , and then normalizing its
columns. We then generate a random representation with

non-zeros chosen independently at random and with

values drawn from with . The clean signal is
obtained by , and its noisy version is obtained by
adding white Gaussian noise with entries drawn from
with as well.

Armed with the dictionary , the corrupted signal and the
noise threshold , we first run the plain OMP,
and obtain a representation with cardinality , and
with a representation error . We can also
check the denoising effect obtained by evaluating the expression

. The value obtained is , sug-
gesting that the noise was indeed attenuated nicely by a factor
close to .

We proceed by running RandOMP times,
obtaining 1000 candidate representations .
Among these, there are 999 distinct ones, but we allow rep-
etitions. Fig. 3(a) presents a histogram of the cardinalities of
the results. As can be seen, all the representations obtained
are relatively sparse, with cardinalities in the range ,
indicating that the OMP representation is the sparsest. Fig. 3(b)
presents a histogram of the representation errors of the results
obtained. As can be seen, all the representations give an error
slightly smaller than the threshold chosen, .

We also assess the denoising performance of each of these
representations as done above for the OMP result. Fig. 3(c)
shows a histogram of the denoising factor

The results are in the range , with roughly half
surpassing the OMP performance and the other half performing
more poorly. However, can we detect the better performing rep-
resentations? Fig. 3(d) shows the relation between the represen-
tations’ cardinality and their expected performance, and as can
be seen, it is hard to choose the best performing one judging
only by their cardinalities. This brings us to the next discussion
about a way to fuse the results to get an enhanced overall de-
noising performance.
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Fig. 3. Results of the RandOMP algorithm with 1000 runs. (a) A histogram of the representations’ cardinalities. (b) A histogram of the representations’ errors;
(c) A histogram of the representations’ denoising factors. (d) The denoising performance versus the cardinality.

C. Rule of Fusion

While it is hard to pinpoint the representation that performs
best among those created by the RandOMP, their averaging is
quite easy to obtain. The questions to be asked are as follows.
(i) What weights to use when averaging the various results?
(ii) Will this lead to better overall denoising? We shall answer
these questions intuitively and experimentally below. In Sec-
tion III, we revisit these questions and provide a justification for
the choices made.

From an intuitive point of view, we might consider an aver-
aging that gives a precedence to sparser representations. How-
ever, our experiments indicate that a plain averaging works even
better. Thus, we use the formula1

(3)

We return to the experiment described in the previous sub-
section, and use its core to explore the effect of the averaging
described above. We perform 1000 different experiments that
share the same dictionary but generate different signals
and using the same parameters ( and ).
For each experiment, we generate RandOMP repre-
sentations and average them using (3).

Fig. 4 presents the results—for each experiment a point is
positioned at the denoising performance of the OMP and the
corresponding averaged RandOMP. As can be seen, the general
tendency suggests much better results with the RandOMP. The

1In Section III, we show that both the OMP and RandOMP solutions should
actually be multiplied by a shrinkage factor, � , defined in (2), which is omitted
in this experiment.

Fig. 4. Results of 1000 experiments showing the plain OMP denoising per-
formance versus those obtained by the averaged RandOMP with � � ���

candidate results.

average denoising performance over all these experiments is
for the OMP and for the averaged RandOMP

method. The mean denoising factor of OMP versus that of
RandOMP is denoted by a square mark. Note the concentration
of some of the results on the diagonal line. This indicates that in
some experiments, the OMP and the RandOMP give the same
results. This takes place in cases where , implying
that the zero solution is found sufficient and both algorithms
stop immediately.

The above results are encouraging and immediately lead to
more questions. (i) How many different representations are
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Fig. 5. The true (original) representation, the one found by the OMP, and the
one obtained by averaging 1000 representations created by RandOMP.

enough in order to enjoy the gain of the RandOMP averaging?
(ii) How does this gain behave as a function of the input
signal-to-noise ratio (SNR)? (iii) How does this gain behave for
different cardinalities of the original representation? (iv) What
is the effect of the dictionary (and its redundancy) on these
results? (v) Are these results related to some sort of known
estimator? and most important of all, (vi) Why do we get this
gain at all? We shall provide experimental answers to questions
(i)-(iv) in the next subsection, and treat questions (v) and (vi)
in Section III by providing a detailed analysis of the estimation
problem at hand.

Just before leaving this section, we would like to draw atten-
tion to the following interesting behavior. When averaging the
representations in forming the denoising estimate, we obtain a
new representation that is no longer sparse. Nevertheless,
this representation is the one that leads to the improved results.
Fig. 5 shows the true representation, the OMP one, and
obtained with 1000 runs of the RandOMP, in a sequel to the ex-
periment shown in Section II-B. As can be seen, these three rep-
resentations are quite distinct, and yet they lead to very similar
signals (the denoising factor obtained in this case is for
the OMP, and for the averaged representation). While the
OMP uses less atoms than the original one, the averaged repre-
sentation is dense, using all the atoms with appropriate weights.

D. Hey, It Works! Some Experiments and Results

In this subsection, we shall empirically answer some of the
questions raised above, with an aim to better map the behavior
of the RandOMP averaging method in different scenarios for
various settings.

First we address the question of how many different repre-
sentations to use in order to enjoy the gain of RandOMP aver-
aging. As the complexity of the new estimator with different
representations is about times higher than that of the plain
OMP, there is a strong incentive to reduce as much as pos-
sible without sacrificing performance. Fig. 6(a) presents the av-
eraged results over 1000 experiments, for a varying number of

representations in the range . We see that while
more representations improve the results, the lion’s share of the
improvement over the OMP is obtained even for small values
of .

All the tests done so far assumed with .
This case corresponds to a very low SNR of and below,
since the noise power is , while the signal power is below

(depending on the atoms chosen and their relative orien-
tations.) Thus, we must ask—how is the gain observed affected
by the input SNR? In order to explore this, we fix the param-
eters , , , vary the noise power in the
range2 , and average the denoising results over 200
experiments. Fig. 6(b) presents the denoising performance of
the averaging as a function of , and as can be seen, our method
is better for all the choices of , but the gain it provides is higher
for lower SNR—as grows (and SNR drops), the ratio between
the two curves in Fig. 6(b) increases.

The next test we perform considers the complexity of the orig-
inal signal, by varying in the range . The sparser the
representation of the original signal, the easier it is supposed to
be denoised. Naturally, we desire to find out how the gain of
the RandOMP average behaves for different cardinalities of the
original representation. Fig. 6(c) presents the results obtained
for , showing that the OMP is inferior to the aver-
aged results for all cardinalities.

The last test we present studies the effect of the redundancy
of the dictionary on the denoising performance. We fix the pa-
rameters , , , the dimension of
the signal is set to , and we vary the number of the
atoms in the range . Averaging the denoising re-
sults over 200 experiments, we obtain the results as shown in
Fig. 6(d). These clearly show that for a wide range of redundan-
cies, the gain obtained by the averaging of the RandOMP results
remains unchanged, and the denoising factor appears to be in-
dependent of (as opposed to the one obtained by the OMP
which deteriorates). The case of underdetermined dictionaries
( ) and especially for is special, since
there the representations found tend to be full, leading to a con-
vergence of the two methods (OMP and RandOMP).

We add that a similar test done on a redundant DCT dictio-
nary3 led to very similar results, suggesting that the behavior we
observe is robust with respect to the dictionary properties.

E. Summary

When we have at our disposal several competing sparse rep-
resentations of the same noisy signal, they can be averaged to
provide better denoising performance. The combined represen-
tation is no longer sparse, but this does not reduce its efficiency
in attenuating the noise in the signal. In this subsection, we de-
scribed how to obtain such a group of representations, how to
fuse them, and what to expect. Specifically, we found that the

2This is a wide range of SNR that provides a good coverage of the cases to
be tested.

3This dictionary is obtained by assigning

���� �� � ������� �	�� � �	���	� for � � � � � and � � � � �

removing the mean from all the atoms apart from the first, and normalizing each
atom to unit 	 -norm.
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Fig. 6. Various tests on the RandOMP algorithm, checking how the denoising is affected by (a) the number of representations averaged; (b) the input noise power;
(c) the original representation’s cardinality; and (d) the dictionary’s redundancy.

method we propose appears to be very effective, robust with re-
spect to the signal complexity, dictionary type, and redundancy,
and yields benefits even when we merge only a few represen-
tations. We now turn to provide a deeper explanation of these
results by a careful modeling of the estimation problem and de-
velopment of MAP and MMSE estimators.

III. WHY DOES IT WORK? A RIGOROUS ANALYSIS

In this section, we start by modeling the signal source in a
complete manner, define the denoising goal in terms of the MSE,
and derive several estimators for it. We start with a very general
setting of the problem, and then narrow it down to the case dis-
cussed above on sparse representations. Our main goal in this
section is to show that the MMSE estimator can be written as
a weighted averaging of various sparse representations, which
explains the results of the previous section. Beyond this, the
analysis derives exact expressions for the MSE for various es-
timators, enabling us to assess analytically their behavior and
relative performance, and to explain results that were obtained
empirically in Section II. Towards the end of this section we tie
the empirical and the theoretical parts of this work—we again
perform simulations and show how the actual denoising results
obtained by OMP and RandOMP compare to the analytic ex-
pressions developed here.

A. A General Setting

1) Notation: We denote continuous (resp., discrete) vector
random variables by small (resp., capital) letters. The proba-
bility density function (pdf) of a continuous random variable
over a domain is denoted , and the probability of a dis-
crete random variable by . If is a set of con-
tinuous (and/or discrete) random variables, then
denotes the conditional pdf of subject to .

Similarly, denotes the conditional probability
for a discrete event . With denoting expectation, we denote
the mean of by

and the variance by

Similarly, in the discrete case

and

Finally, we denote conditional means and variances by

2) Modeling the Problem: Given a dictionary ,
let denote the set of all subdictionaries, where a subdic-
tionary will interchangeably be considered as a subset of the
columns of or as a matrix comprised of such columns. We
assume that a random signal is selected by the fol-
lowing process. With each subdictionary , we associate a
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nonnegative probability , with . Further-
more, with each signal in the range of (that is, such that there
exists a vector satisfying ) denoted
we associate a conditional pdf . Then, the clean signal

is assumed to be generated by first randomly selecting ac-
cording to , and then randomly choosing according
to . After the signal is generated, an additive random
noise term , with pdf , is introduced, yielding a noisy
signal .

Note that can be used to represent a tendency towards
sparsity. For example, we can choose to be a strongly
decreasing function of the number of elements in , or we can
choose to be zero for all ’s except those with a particular
(small) number of elements.

Given , and assuming we know , , and ,
our objective is to find an estimation that will be as close as
possible to the clean signal in some sense. In this work, we
will mainly strive to minimize the conditional MSE

MSE (4)

Note that typically one would expect to define the overall MSE
without the condition over . However, this introduces a formi-
dable yet unnecessary complication to the analysis that follows,
and we shall avoid it.

3) Main Derivation: We first write the conditional MSE as
the sum

MSE MSE (5)

with MSE defined as

MSE (6)

The term MSE is the MSE subject to a noisy signal and a
given subdictionary , and is the probability of given
a noisy signal . By Bayes’s formula, the latter is given by

(7)

where

(8)

is the pdf of given the subdictionary .
Note that —the pdf of —can be computed directly or,

more easily, obtained from the normalization requirement

(9)

Nevertheless, as we shall soon see, it is not explicitly needed in
our analysis.

Next, we consider MSE , the MSE for a given and sub-
dictionary . Using the fact that , we
have

(10)

This well-known property, along with the linearity of the expec-
tation, can be used to rewrite the first factor of the summation
in (5) as follows:

MSE

(11)

Finally, plugging this into (5) we obtain

MSE

(12)

with given by (7). As we have already mentioned, the
overall MSE is given by

MSE MSE MSE (13)

but we shall not need this measure here.
4) The Optimal Estimator: By (12), the optimal that min-

imizes MSE is, not surprisingly, given by

(14)

and, plugged to (12), the resulting optimal conditional MSE is
given by

MSE

(15)

Finally, from (12) and (14) we obtain, for an arbitrary estimator
, the conditional MSE

MSE MSE (16)

This can be used to determine how much better the optimal es-
timator does compared to any other estimator.

5) The MAP Estimator: The MAP estimator is obtained by
maximizing the probability of given

(17)

with

At the moment these expressions remain vague, but as we turn
to use the specific signal and noise models discussed in Sec-
tion III-A.2, these will assume an explicit form.

6) The Oracle: Suppose that the subdictionary that was
chosen in the generation of is revealed to us. Given this infor-
mation, we clearly minimize MSE by setting
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for the given . We call this the oracle estimator. The resulting
conditional MSE is evidently given by the last term of (12)

MSE (18)

We shall use this estimator to assess the performance of the var-
ious alternatives and see how close we get to this “ideal” per-
formance.

B. Back to Our Story—Sparse Representations

Our aim now is to harness the general derivation to the de-
velopment of a practical algorithm for the sparse representation
and white Gaussian noise. Motivated by the sparse-representa-
tion paradigm, we concentrate on the case where depends
only on the number of atoms (columns) in , denoted . We
proceed with the basic case where vanishes unless is
exactly equal to some particular , and has
column rank . We denote the set of such ’s by , and define
the uniform distribution

otherwise.

We assume throughout that the columns of are normalized,
, for . This assumption serves only to

simplify the expressions we are about to obtain. Next, we recall
that the noise is modeled via a Gaussian distribution with zero
mean and variance , and thus

(19)
Similarly, given the subdictionary from which is drawn, the
signal is assumed to be generated via a Gaussian distribution
with mean zero and variance , thus is given by

otherwise.
(20)

Note that this distribution does not align with the intuitive cre-
ation of as with a Gaussian vector with i.i.d. en-
tries. Instead, we assume that an orthogonalized basis for this
subdictionary has been created and then multiplied by . We
adopt the latter model for simplicity; the former model has also
been worked out in full, but we omit it here because it is some-
what more complicated and seems to afford only modest addi-
tional insights.

For convenience, we introduce the notation
(cf. (2)). Also, we denote the orthogonal projection of any

vector onto the subspace spanned by the columns of by

We now follow the general derivation given above. From (8), we
can develop a closed-form expression for . By integra-
tion and rearrangement we obtain (21), shown at the bottom of
the page. Since the only dependence of on is through
the rightmost factor, we immediately obtain by (7) and (9) the
simple formula

(22)

The denominator here is just a normalization. The numerator
implies that, given a noisy signal , the probability that the clean
signal was selected from the subspace decays at a Gaussian
rate with the distance between and , i.e., . This result
is expected, given the Gaussian noise distribution.

Continuing to follow the general analysis, we compute the
conditional mean, , for which we require the condi-
tional probability

(23)

By integration, we then obtain the simple result

(24)

Now the conditional variance can be computed, yielding

(25)

which is independent of and . Thus, the oracle MSE in this
case is simply

MSE (26)

(21)
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The optimal estimator is given, by (14), as

(27)

with taken from (22). This MMSE estimate is a
weighted average of the projections of onto all the possible
subspaces , as claimed. The MSE of this estimate is
given by

MSE (28)

The latter can also be written as

MSE (29)

We remark that any spherically symmetric and
produce a conditional mean, , that is equal to times
some scalar coefficient. The choice of Gaussian distributions
makes the result in (24) particularly simple in that the coefficient

is independent of and .
Next, we consider the MAP estimator, using (17). For sim-

plicity, we shall neglect the fact that some ’s may lie on in-
tersections of two or more subdictionaries in , and there-
fore their pdf is higher according to our model. This is a set
of measure zero, and it therefore does not influence the MMSE
solution, but it does influence somewhat the MAP solution for

’s that are close to such ’s. We can overcome this technical
difficulty by modifying our model slightly so as to eliminate
the favoring of such ’s. Noting that is a constant for all

, we obtain from (17)

(30)
where is defined as the union of the ranges of all .
Multiplying through by , we find that the maximum
is obtained by minimizing , subject
to the constraint that belongs to some . The resulting
estimator is readily found to be given by

(31)

where is the subspace which is closest to , i.e.,
for which is the smallest. The resulting MSE is given
by substituting for in (16).

Note that in all the estimators we derive, the oracle, the
MMSE, and the MAP, there is a factor of that performs a
shrinking of the estimate. For the model of chosen, this is a
mandatory step that was omitted in Section II.

C. Combining it All

It is now time to combine the theoretical analysis of the sec-
tion and the estimators we tested in Section II. We have several
goals in this discussion.

• We would like to evaluate both the expressions and the
empirical values of the MSE for the oracle, the MMSE, and
the MAP estimators, and show their behavior as a function
of the input noise power .

• We would like to show how the above aligns with the actual
OMP and the RandOMP results obtained.

• This discussion will help explain two choices made in the
RandOMP algorithm—the rule for drawing the next atom,
and the requirement of a plain averaging of the representa-
tions.

We start by constructing a synthetic experiment that en-
ables a comparison of the various estimators and formulas
developed. We build a random dictionary of size
with -normalized columns. We generate signals following
the model described above by randomly choosing a support
with columns (we vary in the range ), orthogonalizing
the chosen columns, and multiplying them by a random i.i.d.
vector with entries drawn from (i.e., ). We add
noise to these signals with in the range and evaluate
the following values.

1. Empirical Oracle estimation and its MSE. This estimator
is simply the projection of on the correct support, fol-
lowed by a multiplication by , as described in (24).

2. Theoretical Oracle estimation error, as given in (26).
3. Empirical MMSE estimation and its MSE. We use the for-

mula in (27) in order to compute the estimation, and then
assess its error empirically. Note that in applying this for-
mula we gather all the possible supports, compute the
projection of onto them, and weight them according to
the formula. This explains why in the experiment reported
here we have restricted the sizes involved.

4. Theoretical MMSE estimation error, using (29) directly.
5. Empirical MAP estimation and its MSE. We use the an-

alytic solution to (30) as described above, by sweeping
through all the possible supports, and searching the one
with the smallest projection error. This gives us the MAP
estimation, and its error is evaluated empirically.

6. Theoretical MAP estimation error, as given in (16), when
plugging in the MAP estimation.

7. OMP estimation and its MSE. The OMP is the same as
described in Section II, but the stopping rule is based on
the knowledge of , rather than on representation error.
Following the MAP analysis done in Section III, the result
is multiplied by as well.

8. Averaged RandOMP estimation and its MSE. The algo-
rithm generates representations and averages
them. As in the OMP, the stopping rule for those is the
number of atoms , and the result is also multiplied by .

The above process is averaged over 1000 signal generations,
and the resulting noise attenuation values are shown in Fig. 7
for and . As in earlier figures, we present the ratio
between the actual MSE obtained and the input noise power.
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Fig. 7. MSE as a function of the input noise for � � � (top), � � � (middle), and � � � (bottom).

First we draw attention to several general observations. As ex-
pected, we see in all these graphs that there is a good alignment
between the theoretical and the empirical evaluation of the MSE

for the oracle, the MMSE, and the MAP estimators. In fact, since
the analysis is exact for this experiment, the differences are only
due to the finite number of tests per . We also see that the de-
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noising performance weakens as grows. A third and intriguing
observation that we will not explore here is the fact that there ap-
pears to be a critical input noise power ( ) for which the
MAP and the MMSE estimators (and their approximations) give
their worst denoising performance, as exhibited by the hump in
all the MMSE/MAP cases.

The OMP algorithm is an attempt to approximate the MAP
estimation, replacing the need for sweeping through all the pos-
sible supports by a greedy detection of the involved atoms. As
such, we expect it to be competitive and close to the MAP results
we get (either analytically or empirically). In fact, for , it
aligns perfectly with the empirical MAP, since both are going
through the same computational stages. As grows, there are
some differences between the empirical MAP and the OMP, and
especially for low noise, but for the cases studied here these dif-
ferences are relatively small.

Just as OMP is an attempt to approximate the MAP estima-
tion, the RandOMP averaging is approximating the MMSE es-
timator, thereby yielding much better denoising than OMP. The
core idea is to replace the summation over all possible supports
with a much smaller selected group of representations that are
sampled from the distribution governing by the weights
in (27). Indeed, the representations chosen by RandOMP are
those that correspond to large weights, since they are built in
a way that leads to small projection error for the

atoms chosen. Since the sampling already mimics approxi-
mately the required distribution, all that remains is a simple av-
eraging, as indeed we do in practice. What is required is to tune
the sampling to be faithful, and for that we revisit the case of

.
Considering the case of , we see from (27) that an

atom should be chosen as a candidate representation with a
probability proportional to . This
in turn implies that this probability is also proportional to4

. Thus, RandOMP as described in Sec-
tion II is in perfect agreement with this probability if the
representation’s cardinality is , and this explains the
goodness of fit of RandOMP with the empirical MSE in
Fig. 7—top. However, we also see that RandOMP remains
close to the empirical MMSE for and , implying that
while our sampling strategy is not perfect for , it is fair
enough. Further investigation is required to better sample the
representations in order to get closer to the MSE estimate.

We note an additional advantage of RandOMP: the MMSE
estimator varies continuously with , whereas the MAP esti-
mator does not, possibly leading to artifacts.

All the above discussion is heavily based on the Gaussianity
assumptions made on both the representation’s coefficients and
the noise. These assumptions enabled getting relatively simple
closed-form expressions in our analysis, and in the formula with
which RandOMP draws its atoms. Nevertheless, much of this
work can be extended to non-Gaussian distributions, by fol-
lowing the road map laid out in this paper, though it might be
technically more difficult. Along with such modifications in the
analysis, the RandOMP algorithm should change as well, as a

4Since the columns of the dictionary are normalized, the projection is given
by ��� � ���� ��� � � ��� . Thus, ���� � ��� � � ����� � ���� ��� � . The term
������ ����� � is therefore a constant that cancels out in the normalization.

direct consequence of the expected change in , and this is
in principle computable. Alternatively, one could proceed using
the Random-OMP with the Gaussian formula, in the belief that
there is some robustness in the algorithm to changes in the noise
model. Preliminary tests along these lines provide promising re-
sults, but we leave these matters to a separate work.

As a last point in this section, we return to our observation
in Section II-C regarding the nonsparse representation that the
MMSE approximation provides. The experiments done in this
section also lead to dense representations, with either the exact
MMSE or its RandOMP approximation. It is clear that there
is an excellent sparse solution to our estimation task—this is
the oracle. However, this estimator is unattainable. The MAP
(or better yet, the OMP which is its practical approximation)
provides a sparse solution, but its quality is inferior in -norm,
compared to the MMSE. We also know that the MSE estimation
is the best we can hope for.

In some applications, alongside with the desired accuracy of
the estimation, one desires a sparse outcome. This, for example,
is relevant for compression or recognition purposes. The ques-
tion is: Could there be a practically attainable sparse solution
that leads to near-optimal MSE? Clearly, we cannot hope to by-
pass the MMSE in terms of the error, but could we get close to
it, bypassing the performance of the MAP? The answer to this
question is positive. Once we have estimated the MMSE using
RandOMP, we can then project it to a sparse solution by run-
ning a regular OMP on it and demanding a representation with

non-zeros. Surprisingly enough, this does not lead to MAP,
but rather to a very good (and sparse!) approximation of the
MMSE. Fig. 8 presents such an experiment, which is a direct
continuation of the one reported in Fig. 7. For the case of ,
we test the OMP, RandOMP, exact MMSE (exhaustively com-
puted), and the projected version of RandOMP to three atoms,
and average over 1000 experiments. As can be seen, the perfor-
mance of this sparse solution is far better than the MAP, and
very close to the MMSE one.
D. Summary

Under the assumptions of this section, we obtain simple ex-
plicit expressions for the optimal (MMSE) estimator and its re-
sulting MSE . The optimal estimator turns out to be a weighted
average of the orthogonal projections of the noisy signal on the
feasible subspaces, multiplied by a “shrinkage factor” , which
tends to zero when the noise variance is large compared to
the signal variance, , and to when the opposite is true. The
weights in the weighted average depend on the distances be-
tween and the subspaces, favoring short distances of course,
especially when is large.

While the expressions obtained are indeed simple, they in-
volve either an intolerable summations over (for the MMSE
estimate), or searching over this amount of subspaces (for the
MAP). Thus, these formulas are impractical for direct use. In
that sense, one should consider the RandOMP approach in Sec-
tion II as a sampler from this huge set of subspaces over which
we average. Roughly speaking, since the RandOMP algorithm
tends to find near—by subspaces that lead to sparse representa-
tions, it gives priority to elements in the summation in (27) that
are assigned higher weights. We see experimentally that Ran-
dOMP samples well from the representations, judging by the
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proximity of its results to the MMSE error (both empirical and
theoretical).

The results of this section can easily be extended to the case
where we allow a range of values of with given probabilities.
That is, we can extend these results for the case where

, for general nonnegative functions .

IV. SUMMARY AND CONCLUSION

The Orthogonal Matching Pursuit (OMP) is a simple and
fast algorithm for approximating the sparse representation for a
given signal. It can be used for denoising of signals, as a way to
approximate the MAP estimation. In this work, we have shown
that by running this algorithm several times in a slightly modi-
fied version that randomizes its outcome, one can obtain a col-
lection of competing representations, and those can be averaged
to lead to far better denoising performance. This work starts by
showing how to obtain a set of such representations to merge,
how to combine them wisely, and what kind of results to expect.
The analytic part of this paper explains this averaging as a way
to approximate the MMSE estimate as a sampler of the summa-
tion required. Future work on this topic should consider better
sampling strategies for better approximation of the MMSE re-
sult, an analytical and numerical study of the required number
of samples, an assessment of the robustness of this approach
with respect to non-Gaussian distribution of signals and lim-
ited accuracy in determining their variance, and exploration of
special cases for which practical deterministic algorithms are
within reach.
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Fig. 8. MSE as a function of the input noise for a sparse solution obtained by projecting the RandOMP solution to � � � atoms.
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