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Abstract

Oscillations are a ubiquitous feature of many neural systems, spanning many or-

ders of magnitude in frequency. One of the most prominent oscillatory patterns, with

possible functional implications, is that occurring in the mammalian thalamo-cortical

system during sleep. This system is characterized by relatively long delays (reaching

up to 40 msec), and gives rise to low frequency oscillatory waves. Motivated by these

phenomena, we study networks of excitatory and inhibitory integrate and fire neurons

within a Fokker-Planck delay partial differential equation formalism, and establish ex-

plicit conditions for the emergence of oscillatory solutions, and for the amplitude and

period of the ensuing oscillations, for relatively large values of the delays. By employing

a two time scale analysis, the full partial differential equation is replaced in this limit

by a discrete time iterative map, leading to a relatively simple dynamic interpretation.

This asymptotic result is shown numerically to hold, to a good approximation, over a

wide range of parameter values, leading to an accurate characterization of the behavior

in terms of the underlying physical parameters. Our results provide a simple mechanis-

tic explanation for one type of slow oscillation based on delayed inhibition, which may

play an important role in the slow spindle oscillations occurring during sleep. More-

over, they are consistent with experimental findings related to human motor behavior

with visual feedback.



1 Introduction

Neuronal oscillations in cortical networks, spanning five orders of magnitude in frequency

(Buzsáki, 2006; Buzsáki & Draguhn, 2004), are playing an increasingly important role in

attempts to interpret the behavior of mammalian nervous systems. A particularly promi-

nent role is played by the many rhythms characterizing the sleep state, which have been

suggested to be implicated in input gating, neuronal assembly construction, facilitation of

synaptic plasticity and long-term consolidation (e.g., (Buzsáki, 2006; Buzsáki & Draguhn,

2004)). Among the many types of sleep oscillations a particularly prominent role is played by

the so-called spindle oscillations (in the range of 12− 20 Hz), generated within the thalamo-

cortical system, which are synchronized over large cortical regions. In vivo experiments have

demonstrated the critical involvement of the inhibitory neurons from the reticular nucleus of

the thalamus (Buzsáki, 2006), rather than local-circuit interneurons. An important charac-

teristic of this thalamocortical-reticular system is the longer delays required for information

to propagate from the cortex to the thalamus and reticular nucleus. For example, (Ferster

& Lindström, 1983; Harvey, 1980; Miller, 1996; Swadlow, 1991) provide experimental evi-

dence that cortico-thalamic projections originating in layer 6 of the cortex have conduction

times up to 40 msec; see also Buzsáki (Buzsáki, 2006). These delays are much longer than

the characteristic neuronal time scales, which are in the order of several milliseconds. The

model developed in this paper is motivated by this time scale separation, which leads to an

analytically tractable and accurate description of large scale oscillations in the regime where

the temporal delays are long. Interestingly, this framework provides a good description of

oscillations in other regimes as well.

While several detailed and physiologically motivated models have been proposed to ex-

plain the origin of spindle oscillations (Destexhe, Contreras, & Steriade, 1998; Hill & Tononi,

2005), incorporating many details at the level of both single neurons, synapses and networks,

we propose a simple model for networks of excitatory and inhibitory neurons, influencing

each other through delayed synaptic interactions. Several previous models have dealt with

the effect of delayed inhibition on the generation of global network oscillations (e.g., (Brunel,

2000; Brunel & Hakim, 1999; Lindner, Doiron, & Longtin, 2005; Marinazzo, Kappen, & Gie-

len, 2007)). The main contribution of the present work is in deriving an explicit discrete

time dynamic recursion for the oscillatory dynamics, enabling a straightforward analysis in

terms of phase plane tools. Moreover, we obtain closed form analytic expressions for the

various oscillation parameters, which depend explicitly on the neuronal and network param-

eters, thereby relating microscopic variables to the emergent dynamic behavior. A specific

2



prediction of our model is that the oscillation period is given by twice the delay period. For

delays in the range of 20 − 40 milliseconds this implies oscillation frequencies of 12.5 − 25

Hz, well within the range of the spindle oscillation frequencies. While we do not expect our

model to replace the detailed models developed so far (e.g., (Destexhe et al., 1998; Hill &

Tononi, 2005)), it does serve to provide a relatively simple and direct explanation for global

oscillations based on delayed feedback inhibition.

Systems composed of nonlinearly interacting elements, e.g., neurons and synapses, consti-

tute basic building blocks of the information processing and computation that is believed to

take place in the cerebral cortex. While the behavior of single such elements, receiving exter-

nal stochastic input, has been mathematically analyzed and characterized over many years

(e.g., (Tuckwell, 1989)), combining spiking neurons into a network of interacting elements

poses very challenging mathematical problems, many of which are still open. In particular,

viewing such networks as input/output systems in the engineering sense of the word, a basic

issue relates to determining the relationship between the input to the system and the out-

put resulting from the stochastic nonlinear dynamics. Characterizing such a relationship is

essential if one is aiming at understanding more complex structures composed of multiple

systems. While a large variety of model neurons exists, in this work we use the simple Leaky

Integrate and Fire (LIF) model neuron, which has played a particularly important role in

neural modeling, in spite of its limitations (e.g., (Gerstner & Kistler, 2002; Vogels, Rajan,

& Abbott, 2005)).

It has been known for a long time that delayed inhibition can result in oscillations (Glass

& Mackey, 1988; Murray, 2002). However, the precise interplay between internal feedback

and the driving force has not been widely studied. The main contribution of this work is

the formulation of explicit physically meaningful conditions for the onset of oscillations, and

for their frequencies and amplitudes. We consider populations of LIF neurons interacting

through temporal delays, described within the classic Fokker-Planck (FP) partial differential

equation (PDE) framework (Risken, 1996). Our explicit results are precise in well-defined

limits, and are shown by careful numerical solutions of the PDE to hold approximately across

a broad range of the physical parameters.

While much previous work was devoted to a mean field approach to populations of spik-

ing neurons (see (Renart, Brunel, & Wang, 2003) for an extensive review), most of the work

on the emergence of oscillatory solutions has been either numerical (e.g., (White, Chow,

Ritt, Soto-Trevio, & Kopell, 1998)), or based on linear stability analysis (e.g., (Brunel, 2000;

Brunel & Hakim, 1999; Lindner et al., 2005)), which is often hard to interpret in direct
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physical terms. Moreover, the case of delays has not been considered extensively. In this

context, (Brunel & Hakim, 1999) studied a population of integrate and fire inhibitory neu-

rons, and demonstrated, using linear stability analysis, a sharp transition from irregular

firing to synchronized oscillatory activity. Roxin et al. (Roxin, Brunel, & Hansel, 2005) in-

vestigated the role of delays in rate-based Wilson-Cowan type systems with spatial structure,

interacting via delayed excitatory and inhibitory interactions. While many of their results

were analogous to those displayed in simulations of spiking neurons, they were not directly

derived from the spiking neuron dynamics. A more detailed comparison with (Brunel &

Hakim, 1999) is presented in Section 3.1. Finally, (Lindner et al., 2005) and (Marinazzo et

al., 2007) also considered the effect of delayed inhibition on network oscillations. However,

they studied a two-layered architecture of excitatory and inhibitory neurons, without lateral

interactions within each population. Similarly to (Brunel & Hakim, 1999) their derivation of

conditions for oscillations was also based on linear response theory. Related work in (Börgers

& Kopell, 2003) also discusses the effects of different temporal scales (rather than delays) on

oscillations.

We stress that our main aim here is to develop a concise mathematical characterization

of the effect of inhibition and long delays on network behavior, rather than on studying

precise architectural details. Such a description can form the basis for more extensive studies

involving detailed architectural constraints and specific experimental conditions.

The remainder of this paper is organized as follows. We begin in Section 2 with a

statement of the problem and the equations describing the system. An important step

facilitating further analysis is based on recasting the underlying equations in dimensionless

form. Section 3.1 presents a two-time-scale analysis of the problem in the limit of large delays,

demonstrating how it can be approximated by a discrete recursive mapping. This section

also presents some qualitative and quantitative predictions of the model, and compares them

to a careful numerical solution of the full PDE. The details of the somewhat non-standard

numerical solution scheme are presented in Appendix B. Section 3.2 presents another special

limit, corresponding to low diffusion, where an approximate characterization of the oscillation

can be derived analytically. The paper concludes in Section 4 with a summary of the results

and a short discussion.
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2 Problem Formulation

In this section, and in the sequel, we follow the notation and nomenclature of (Brunel,

2000). For completeness, we repeat the main steps in the derivation of the network level

Fokker-Planck equation.

2.1 The Model

We consider a system of N LIF neurons, composed of NE excitatory neurons and NI in-

hibitory neurons, where N = NE +NI . The voltage dynamics of each neuron is given by the

following stochastic differential equation complemented by a threshold condition






τi

d

dt
vi(t) = −vi(t) + RiIi(t) + zi(t),

if v = θ then vi = vr for τref seconds,

where τi is the membrane time constant, Ii(t) is the input current received from other

neurons, and zi(t) represents a noisy external input, assumed for simplicity to be Gaussian

white noise with mean µe and variance σ2
e . The parameter θ is a threshold for generating a

spike, upon which the voltage is reset to vr for τref seconds. The input current Ii(t) is given

by

RIi(t) =

Ci
∑

j=1,j 6=i

Jij

∑

k

δ(t − tkj − Dij), i = 1, 2, . . . , N,

where Ci represents the number of inputs to the ith neuron, Jij is the strength of the

connection between the jth presynaptic neuron and the ith postsynaptic neuron, {tkj}k are

the firing times of the jth pre-synaptic neuron, and Dij is the propagation delay between

the jth neuron and the ith neuron. We consider two homogeneous populations of excitatory

and inhibitory neurons, where Jij = JE > 0 if j is an excitatory neuron, and Jij = JI < 0

if j is inhibitory. Based on the homogeneity assumption, we take all delays to be equal,

namely Dij = D for all i and j, and τi = τ for all i. The input to each cell consists of CE

excitatory neurons and CI inhibitory currents where CE + CI = C, and we set g = |JI |/JE,

and γ = CI/CE.

Brunel (Brunel, 2000) shows that in the limit NE, NI → ∞, with CE/NE → 0 and

CI/NI → 0, one obtains a FP Equation (Risken, 1996). The FP equation is a partial

differential equation, describing the evolution in time of the probability density function

P (v, t). The function P (v, t)dv describes the probability of finding the membrane within
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the voltage range [v, v + dv] at time t. According to (Brunel, 2000) the FP equation and

boundary conditions for a network of LIF neurons is






































































∂P (v, t)

∂t
= −∂S(v, t)

∂v
+ δ(v − vr)S(θ, t),

S(v, t) = −
[v

τ
− µe

τ
− CEJE(1 − γg)S(θ, t − D)

]

P (v, t)

−
[

σ2
e

τ
+ CEJ2

E(1 + γg2)S(θ, t − D)

]

∂P (v, t)

∂v
,

P (θ, t) = 0,

P (−∞, t) = 0,

P (v, 0) = h(v) where

∫ θ

−∞

h(v)dv = 1.

(1)

Here S(v, t) is the probability flux through v at time t. Without loss of generality, we assume

that the initial time is t = 0. The second term in the definition of S(v, t) leads to what is

often termed the diffusion term of the PDE. For simplicity, we have set τref = 0, and replaced

the boundary condition stated in (Brunel, 2000) at v = vr with a singular contribution

δ(v − vr)S(θ, t). This representation is mathematically equivalent, but more convenient for

solving the FP equation numerically. Also, it expresses more explicitly the fact that the

probability flux leaving the domain is injected at v = vr. We note that setting τref = 0 does

not modify our results significantly, so long as τref ≪ τe, where τe is defined in (3) below.

We define the network activity, ν(t), as the probability flux per unit time (Brunel, 2000),

given by

ν(t)
△
= S(θ, t) = −

[

σ2
e

τ
+ CEJ2

E(1 + γg2)ν(t − D)

]

∂P (v, t)

∂v

∣

∣

∣

∣

v=θ

. (2)

Keeping in mind that S(v, t) in (1) depends on P (v, t) it is clear that (1) is not a linear

PDE. More precisely, (1) is a quasi-linear elliptic delay PDE. While there is no known

closed form solution to this type of PDE, it can be studied analytically in certain physically

meaningful limits. In particular, our main focus in this work is on the oscillatory regime,

which has mainly been studied through simulations in the past. More specifically, we consider

two regimes where significant analytic advances can be made.

1. The regime of large temporal delays, which, when combined with a dominant inhibitory

component is known to lead to oscillations (Glass & Mackey, 1988; Murray, 2002). The

basic observation here is that for large temporal delays we can separate the dynamics

into two distinct time scales. The first temporal scale leads to fast relaxation into a
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quasi-steady mode with a characteristic time scale of the (large) delay D; see Section

3.1 for details.

2. The regime where the external input is characterized by a large mean and a small

variance, and where the internal feedback variance is also small. This regime corre-

sponds to a low diffusion level. In this case oscillations occur even for small delays,

and their properties can be described accurately within our framework; see Section 3.2

for details.

2.2 A dimensionless FP equation

The analysis of (1) is greatly facilitated by expressing it in a dimensionless form. In this

section we use hats above symbols to denote dimensionless variables. First, we define a

characteristic time, τe, related to the system’s response to the external input,

τe
△
=

τ

(µe − vr)/(θ − vr)
. (3)

The variable τe relates the characteristic membrane time scale τ to the expected strength

of the external driving force µe, and is related to the typical response time of an externally

driven system. We assume throughout that τe ≥ 0.

Observe that P (v, t) has the dimensions of volt−1, while S has the dimensions of sec−1.

We define the following dimensionless variables

v̂
△
=

v − vr

θ − vr

, t̂
△
=

t

D
, P̂ (v, t)

△
= (θ − vr)P (v̂, t̂) , Ŝ(v̂, t̂)

△
= τeS(v, t), (4)

and an additional dimensionless parameter that represents a ratio of time scales,

ǫ̂
△
=

τe

D
. (5)

Note that the dimensionless reset value is v̂ = 0 and the dimensionless threshold value is

v̂ = 1.

Substituting (3), (4), and (5) into (1), we obtain the following dimensionless equations
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and boundary conditions


























































ǫ̂
∂P̂ (v̂, t̂)

∂t̂
= −∂Ŝ(v̂, t̂)

∂v̂
+ δ(v̂)Ŝ(1, t̂) ,

Ŝ(v̂, t̂) = −
[

ηv̂ − 1 − ρŜ(1, t̂ − 1)
]

P̂ (v̂, t̂) −
[

ηβ + κŜ(1, t̂ − 1)
] ∂P̂ (v̂, t̂)

∂v
,

P̂ (1, t̂) = 0,

P̂ (−∞, t̂) = 0,

P̂ (v, 0) = ĥ(v̂) and

∫ 1

−∞

ĥ(v̂)dv̂ = 1 ,

(6)

where we have introduced the following dimensionless parameters

η
△
=

τe

τ
, ρ

△
=

JECE(1 − γg)

θ − vr

, β
△
=

σ2
e

(θ − vr)2
, κ

△
=

1

2

J2
ECE(1 + γ2g)

(θ − vr)2
. (7)

It is useful to interpret these parameters in physical terms.

• η is a time scale ratio, relating τe, the temporal response scale to an external stimulus,

to the natural membrane time scale τ . Since τe is inversely proportional to µe, small

values of η correspond a large external drive.

• ρ represents the normalized average network feedback, and can be either positive (dom-

inant excitation) or negative (dominant inhibition).

• β is the normalized variance of the external noise process z(t).

• κ is the normalized feedback variance, namely the variance resulting from the stochas-

ticity of the neurons themselves.

The parameters η and β represent, respectively, the inverse mean and the variance of

the external drive. Values of ηβ ≪ 1 represent a focused driving force (large mean and

small variance), while ηβ ≫ 1 represents a diffuse drive. The variable κ is similar to β,

except that it refers to the internal rather than to the external drive, whereas the variable

ρ represents the internal (excitatory or inhibitory) drive, with large values corresponding to

a strong internal drive. As can be expected, the dynamics of the system depends strongly

on the balance between the values of these four parameters.

The dimensionless activity ν̂(t̂) is given by

ν̂(t̂) = Ŝ(1, t̂) = −[ηβ + κν̂(t − 1)]
∂P̂ (v̂, t̂)

∂v̂

∣

∣

∣

∣

∣

v̂=1

. (8)
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A remark concerning notation In this section we have used hats to denote dimensionless

variables. In the sequel we use dimensionless variables throughout, and remove the hats in

order to simplify the presentation. At specific points we will return to dimensional physical

variables, and will indicate this explicitly.

3 Regimes Conducive to Oscillatory Solutions

Our main goal is to derive solutions describing oscillatory behavior. There are two main

factors that are conducive to oscillatory solutions: relatively long delays and a strong and

focused external drive (see also (Lindner et al., 2005)). It is well known that long delays

tend to destabilize dynamical systems (e.g., (Murray, 2002)). The focused external driving

force tends to synchronize the elements encouraging them to fire together. As demonstrated

in (Lindner et al., 2005), for a different network architecture, single elements which are

themselves oscillatory (such as LIF neurons subject to a focused external drive) tend to

synchronize and oscillate under these conditions. We next study these factors as two separate

regimes, and derive closed-form solutions in the limiting case for each one of them. These

solutions are then shown numerically to be relevant across a rather wide range of parameters.

The upshot is that these physically-meaningful results appear to yield at least a qualitative

indication of the behavior whenever significantly oscillatory solutions exist, which becomes

quantitatively accurate as the most strongly oscillatory regimes are approached.

3.1 The Regime of Long Delays

We begin with the case where the temporal delays are large relative to the characteristic

neuronal time scales. In this case we use a two time scale analysis that enables us to replace

the full PDE with a simple discrete recursion, which captures, in a simplified manner, the

main features of the solution. A related neural network model with time scale separation was

considered in (Cortes, Torres, Marro, Garrido, & Kappen, 2006), where presynaptic noise

occurred on a time scale which was much shorter than the neural dynamics itself. Similarly

to our case, this separation fasciated an approximate analytic treatment of the dynamics,

although their neural model is very different from ours.

Before proceeding, we remind the reader that the variables and parameters in the sequel

are all assumed to be dimensionless.
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Consider an auxiliary linear PDE, which will be used in order to characterize the solution

of the nonlinear PDE (6):






















































ǫ
∂P (v, t)

∂t
= −∂S(v, t)

∂v
+ δ(1, t)S(1, t),

S(v, t) = − [Av − B] P (v, t) − ∂P (v, t)

∂v
,

P (1, t) = 0,

P (−∞, t) = 0,

P (v, 0) = h(v) and

∫ 1

−∞

h(v)dv = 1,

(9)

where A ≥ 0 and B are real-valued parameters. This PDE possesses a steady state solution,

Psteady, obtained by setting the left hand side of the first equation in (9) to zero. We find

that

Psteady(v) =











αe−
(Av−B)2

2A if v ≤ 0 ,

αe−
(Av−B)2

2A

[

erfi
(

A−B
√

2A

)

−erfi
(

Av−B
√

2A

)

erfi
(

A−B
√

2A

)

−erfi
(

−B
√

2A

)

]

otherwise ,
(10)

where

erfi(x) =
erfi(ix)

i
, i =

√
−1,

and where the constant α is determined from the normalization of the integral of P in (9).

This normalization can be seen to remain valid for all time by integrating the equation

over the v domain and using S(−∞, t) = 0. Since ǫ, defined in (5), can be considered as

a scaling of the time, the convergence rate of P (v, t) to Psteady(v) is proportional to 1/ǫ.

For the case where ǫ → 0 the convergence is instantaneous. We use this fact to study

the complete problem. For ǫ → 0, we assume that the solution to (6) is dominated by a

quasi-steady (slowly varying) solution P0(v, t), with a characteristic time scale of 1 (or D in

the dimensional system). The first approximation, neglecting the O(ǫ) term, leads to the

following ordinary differential equation for P0(v, t)






















































0 = −∂S0(v, t)

∂v
+ δ(1, t) S0(1, t) ,

S0(v, t) = − [ηv − 1 − ρS0(1, t − 1)] P0(v, t) − [ηβ + κS0(1, t − 1)]
∂P0(v, t)

∂v
,

P0(1, t) = 0,

P0(−∞, t) = 0 ,
∫ 1

−∞

P0(v, t)dv = 1 .

(11)
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Given S0(1, t − 1) and the fixed parameters η, ρ, β, and κ, the solution P0(v, t) can

immediately be read from (10), by substituting

A =
η

ηβ + κS0(1, t − 1)
, B =

1 + ρS0(1, t − 1)

ηβ + κS0(1, t − 1)
. (12)

From (10) and (12) we can compute ∂P0/∂v at v = 1, which, combined with (9) and (11),

leads to

− ∂P0(v, t)

∂v

∣

∣

∣

∣

v=1

=

{

π

2A
erfc

(

B√
2A

) [

erfi

(

A − B√
2A

)

+ erfi

(

B√
2A

)]

+

√

π

2A

∫ 1

0

e−
(Au−B)2

2A

[

erfi

(

A − B√
2A

)

+ erfi

(

Au − B√
2A

)]

du

}−1

.

(13)

Next, define νnew

△
= S0(1, t) and νold

△
= S0(1, t − 1). The relation between νnew and νold,

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

B

−∂ P
0
 / ∂ v

|A/B|

Figure 1: The behavior of the partial derivative − ∂P0(v,t)
∂v

∣

∣

∣

v=1
vs. the parameters |A/B| and B,

from which the probability flux ν(t) = S0(1, t) can be determined based on (8).

derived from (11) using P0(1, t) = 0, is given by

νnew = G(νold) where G(νold)
△
= −[ηβ + κνold]

∂P0(v, t)

∂v

∣

∣

∣

∣

v=1

. (14)

Equation (14) can be viewed as a non-linear map νold 7→ νnew, where the steady state νsteady =

νnew = νold is obtained by setting νsteady = G(νsteady). This fixed point loses stability (Strogatz,

2001) when the condition
dνnew

dνold

∣

∣

∣

∣

νold=νsteady

< −1 (15)

11



is satisfied.

The only special assumption made so far in the two-timescale analysis is that ǫ is small,

or, equivalently, the delay D is large. The mapping (14) is indeed exact in this limit. Deeper

physical insight and simple closed form expressions can be obtained in the regime where the

external driving force is characterized by a relatively large mean value (small η), and the

relative variance - both internal and external - is not too large. The limiting case of this

regime, where the variance is vanishingly small, will be studied separately in Section 3.2.

Presently, we study the intersection between the regimes (where the oscillatory behavior is

in fact strongest.) From (12) we have

A

B
=

η

1 + ρνold

. (16)

When this term is small (i.e., the external drive is relatively strong), and |B| is not too small

(i.e., the system is not very diffusive), we can expand (14) in a power series, and obtain

accurate approximations by taking just a few leading-order terms. Full details are given in

Appendix A. Formally, the expansion is valid as long as

η < 1 + ρνold and κ <
(1 + ρνold − η)2 − 2βη2

2ηνold

, (17)

whereupon the arguments of the error functions in (13) (i.e., erfi(x), erfc(x), and erfi(x)) are

all larger than one. We focus on the leading terms, namely, the lowest orders in η. After

some algebra we obtain for positive B

νnew = 1 + ρνold −
η

2
− ηκνold

1 + ρνold

− 1 − 12β

12(1 + ρνold)
η2 + O(η3 + κη2). (18)

When B (hence also 1 + ρνold) is negative, νnew tends to zero exponentially fast as η → 0.

To demonstrate the relevance of taking a few leading-order terms in the expansion , we

plot ∂P0(v, t)/∂v|v=1 against (|A/B|, B), in Figure 1. It is readily seen that, as long as |B|
is not too small, the function behaves very smoothly, and, clearly, for B < 0 it tends to 0

very fast when |A/B| is small. More detailed statements regarding the series approximation

appear in Appendix A.

3.1.1 Analysis

Several conclusions can be drawn immediately from (15) and (18).

12



• The steady state solution, given by setting νsteady = G(νsteady), yields, to leading order

(in physical units), νsteady = (µe − (vr + θ))/(2τ(θ− vr)(1− ρ)). In this limit the steady

state activity is linear in the mean external driving force µe. Moreover, as expected,

νsteady is monotonically increasing with the average feedback JECE(1− γg) = ρ(θ − vr)

(as long as it is positive, namely, as long as the excitation dominates the inhibition).

• The condition for instability, characterized by the emergence of an oscillatory solution,

is ρ + O (η2 + κη) < −1, which, in terms of physical parameters, to leading order,

corresponds to
JECE(1 − γg)

θ − vr

< −1, (19)

implying that oscillations occur only for a sufficiently large value of inhibition, yielding

a strong average negative feedback. This requirement for strong inhibition (or negative

feedback in general) is known from many other systems (e.g., (Glass & Mackey, 1988;

Murray, 2002)).

• If an oscillatory solution develops, then, to leading order, νold and νnew alternatingly

assume the values 0 and 1− η/2+O (η2 + ηκ), with short-time transitions in between.

Note that during these transitions the term 1 + ρνold changes sign, so the strong-drift

assumption (stating that the term multiplying P (v, t) in (6) is large) breaks down

during these short time intervals, whereby the system undergoes a fast shift to the

next quasi-steady activity. In physical terms, the maximal amplitude of the oscillation

is given, to leading order, by

νmax ≈ (µe − (vr + θ)/2)/(τ(θ − vr)) ≈ (1 − ρ)νsteady.

• The period of the oscillations tends to 2 as ǫ tends to zero (2D in physical units.)

In Figure 2 we compare the results of the theory to a full accurate numerical solution of

the FP equation (6); the details of the numerical solver are provided in Appendix B. The

top left figure displays the fixed point iterations for the case where the stationary solution is

stable, and the top right figure depicts the dynamical evolution resulting from the numerical

solution of the FP equation, converging to the steady solution of ν = G(ν). The lower figure

displays the case where the stationary solution is unstable, leading to oscillations. The left

figure depicts the discrete dynamics νnew = G(νold) leading to a two-cycle corresponding to

the oscillation in the full system, and the right figure presents the oscillations resulting from

the solution of the FP equation (6). As can be seen from the figure, the period and amplitude

of the oscillations are very well captured by the theory.
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The accuracy of the discrete time approximation (14) is further explored in Figure 3 for

a range of η values and several values of ǫ. The left plot compares the oscillation amplitude

observed in the numerical results to that obtained by setting νold = 0 on the right side of

(18). For the right plot, we differentiate the right side of (18) with respect to νold, evaluate

it at νsteady, obtained also from (18) by setting νnew = νold, and equate it to -1. This yields

the following theoretical critical value of ρ associated with the onset of instability:

ρcrit = −1 − 4κη − (12β − 1)η2/3 + O(η3 + κη2).

We compare this to the critical ρ of the numerical solutions. The figure shows both

the great accuracy of the theoretical prediction when ǫ and η are small, and its continuing

relevance even when these values are not very small. Observe that, as noted, the tendency

towards oscillatory behavior is stronger as ǫ → 0 (long delay,) and also as η → 0 (focused

external drive) manifest in the negative slopes of the graphs with respect to each of these

parameters.

In summary, we obtain explicit physical estimates for the onset of instability, for the

steady activity and for the amplitude and frequency of the oscillations. These computations

were possible due to the establishment of the discrete mapping (14), which can be analyzed

much more effectively than the full nonlinear PDE (6).

Next, we consider the period of the oscillations, focusing on its dependence on the pa-

rameters ǫ, ρ and η. The framework developed does not enable us to obtain expansions for

the period, beyond the leading order (in ǫ) term, which is 2 (2D in physical units). We

therefore resort to a numerical study, fixing β = κ = 0.1 and compute the period for a range

of values of ǫ and for several values of ρ and η. The results are given in Figure 4.

As expected, the nondimensional period tends to 2 as ǫ tends to 0. We discern a clear

tendency towards an increase of the period as ǫ is increased, which becomes faster as ρ

becomes more negative (more dominant inhibition). We observe four distinct “fans”, corre-

sponding to the different values of ρ. Note that the fan ‘widths’ decrease as ρ becomes more

negative. We conclude that, to a first approximation in small ǫ/η, the period is roughly a

(linear) function of this parameter ratio:

Period ≈ 2 + c
ǫ

η
= 2 + c

τ

D
,

and this approximation improves rapidly as ρ becomes more negative. In terms of physical

units the period is thus approximately 2D+cτ , with the slope c increasing as ρ becomes more

14
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Figure 2: Top left - the function G(ν) and iterations of (14) leading to a fixed point. Top right -

the temporal dynamics based on a numerical solution of the full Fokker-Planck equation. Bottom

left and right, same as above, in the oscillatory regime. The parameter values are ǫ = 0.01, η =

0.05, β = 4, κ = 0.1, and ρ = −0.8 for the top figure and ρ = −1.2 for the bottom figure.

negative. Thus, the increase in the period (over the asymptotic value of twice the delay)

is approximately proportional to the time-scale of the membrane, which can be thought of

as an adjustment time that is added to the delay, resulting from the non-negligible time

(relative to D), which is required for the neuron to reach threshold. This adjustment time

increases somewhat for stronger inhibition.

The results presented above provide an explicit characterization of the stationary and

oscillatory dynamics of the system in the limit of large delays, corresponding to slow temporal

oscillations. Before moving on we present a short comparison of our results to those presented

in (Brunel, 2000; Brunel & Hakim, 1999), which served as a motivation to our study. This

work considers the same system, and provides a closed form solution in the static case,

similarly to (10). In general the value of the stationary activity ν is determined implicitly

through the self-consistent numerical solution of a set of equations, and can be written

out explicitly only in special limits (e.g., equations (23) and (24) in (Brunel, 2000)). Going
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Figure 3: Numerically computed values, based on solving (6), are compared to the theoretical

prediction based on the proposed recursion (18) for several values of ǫ and a range of η’s, with

β = 1, and κ = 0.01. Left: oscillation amplitude for ρ = −2; Right: ρcrit, the critical value of ρ.
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Figure 4: Numerically computed values of the nondimensional period for a range of values

of ǫ, with β = κ = 0.1. We observe distinct ‘fans’, each corresponding to a fixed value of ρ.

The values used for ρ are −1.5,−1.7,−1.9,−2.1, where −1.5 corresponds to the lowest set

of curves and −2.1 to the highest set of curves. The different values of η, within each fan

(fixed value of ρ), appear in the figure legend.

beyond the static case, the authors develop a linear stability framework, leading to conditions

for the onset of oscillations. This analysis, being perturbative in nature, provides an exact

description of the oscillatory behavior only near the bifurcation point. Explicit expressions

for the oscillation amplitude, and a complete characterization of the oscillation are difficult
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to obtain within such a framework, as was possible in the special limits considered in this

work (large delays and/or weak diffusion - see Section 3.2). In fact, the particular oscillatory

regime discussed in (Brunel & Hakim, 1999) is restricted to relatively short delays (see

Section 3.2 in (Brunel & Hakim, 1999)). In summary, while working within the framework

set in (Brunel, 2000; Brunel & Hakim, 1999), we have been able to analytically study a

physically interesting regime, not considered explicitly in that work, and for which a great

deal of mathematical and physical insight may be obtained regarding the oscillatory mode.

3.2 The regime of low diffusion

A second interesting limit where explicit results can be obtained occurs when the diffusion

term in the FP equation (6) is small relative to the term 1 + ρνold, and the delay is not long.

More precisely, we let κ → 0 and η → 0. Unlike other parts of this paper, ǫ need not be small

in this limit. This regime corresponds to the left-hand parts in Figure 3, where it is indeed

seen that νmax → 1 and ρcrit → −1 independently of ǫ. The behavior in this regime differs

from that observed in the previous section. Specifically, the oscillatory regime in section 3.1

led to an oscillation taking place between two quasi-stationary regimes (see Figure 2). In the

present case the oscillation is more complicated in nature, leading to three different regimes

within each oscillation period - see Figure 5.

The FP equation (6) becomes



















































ǫ
∂P (v, t)

∂t
= − ∂S(v, t)

∂v
+ δ(1, t)S(1, t),

S(v, t) = − [−1 − ρνold] P (v, t)

P (1, t) =0,

P (−∞, t) =0,
∫ 1

−∞

P (v, t)dv̂ =1.

(20)

The solution to this diffusion-free equation is of the form

P (v, t) = F (ǫv − t(1 + ρνold)), (21)

for some smooth function F (x). Such a solution describes a linear dependence of the voltage

v on time, augmented by the boundary condition stating that upon reaching v = 1, the

voltage is instantaneously re-injected at v = 0.
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Consider first the case where −1 ≤ ρ ≤ 0. In this case, the flux moves towards v = 1

at speed (1 + ρ)/ǫ, and since, upon reaching v = 1, it is re-injected at v = 0, we obtain a

steady solution P0(v) = 1[0 ≤ v ≤ 1], where 1[A] is an indicator function which equals 1 on

the set A and 0 otherwise.

In the case where ρ < −1, a periodic solution of approximate period 1 − ρ is obtained

consisting of three distinct phases. Without loss of generality, we describe the dynamics

of one cycle at the times 0 ≤ t ≤ 1 − ρ. The three phases, described below, are depicted

graphically in Figure 5. A summary of this dynamics is presented in Figure 5.

Phase 1: 0 ≤ t < 1. We set the time origin to 0 arbitrarily; any other initial point

would do. We assume that ν(t − 1) = 0 and ν(t) = 1 in this regime. We will show that

after time 2 − ρ, these conditions are repeated leading to oscillatory behavior. From the

conditions ν(t− 1) = 0 and ν(t) = 1 we see that for 0 ≤ t < 1 the flux tends to move to the

right with speed 1/ǫ, and since it is re-injected at v = 0 we obtain the stationary solution

P0(v) = 1[0 ≤ v ≤ 1]. The value ν(t) = 1 is readily found by computing the quasi-steady

solution in the limits we are considering here.

Phase 2: 1 ≤ t < 2, ν(t − 1) = 1 and ν(t) = 0. The flux velocity is equal to (1 + ρ)/ǫ < 0.

Thus, the square moves to the left, i.e., towards the negative direction of v. During this time,

which lasts 1 unit until ν(t − 1) becomes 0, the square traverses a distance of |(1 + ρ)/ǫ|.

Phase 3: 2 ≤ t < 1 − ρ, ν(t − 1) = 0 and ν(t) = 0. From the previous phase ν(t − 1) = 0.

The drift direction is towards the right with speed 1/ǫ, i.e., the positive direction of v. This

phase lasts until the rectangle reaches the threshold v = 1, i.e., −ρ − 1 time units.

We demonstrate in Figure 6 that this behavior is indeed approximately reproduced in the

numerical solution of the PDE (6), under the conditions specified above (see figure caption

for parameter values.) Note that this is not an exact analysis, because 1 + ρνold changes

sign when we switch from phase to phase, and the terms that were assumed small actually

diverge for a short period of time. This, and the non-vanishing diffusion, are the reason for

the smoothing of the square as it travels to the left. However, the square is resharpened

when the first phase is repeated, and the limit cycle thus persists.

18



Figure 5: Illustrating the dynamics of the FP equation in the case of small diffusion, where κ → 0

and η → 0. Following an initial phase with P (v, t) = 1[0 ≤ v ≤ 1], the distribution moves to the

left during phase 2, and then again to the right in phase 3, thereby completing a cycle after time

1 − ρ. Details of the dynamics are given in the main text.
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Figure 6: The distribution P (v, t), obtained by a numerical solution of (6), for a moderate value

of ǫ but small values of η and κ, displaying the shape at the beginning (P (v, t) = 1[0 ≤ v ≤ 1])

and middle of a cycle (cf. Figure 5). The parameters used are (ǫ, η, ρ, β, κ) = (2, 0.002,−5, 1, 0.01).

4 Summary and Conclusions

We have studied a sparsely connected network of excitatory and inhibitory spiking neurons

influencing each other through delayed interactions. Within the mean field formalism devel-

oped in (Brunel, 2000), and captured within a nonlinear FP equation description, we have

constructed a simplified description of the dynamics based on a nonlinear discrete time map-

ping. Focusing on the oscillatory regime, which has mainly been characterized in the past

through numerical simulations and linear stability analysis, we have been able to present a

closed-form concise description of the oscillations. As has been shown in previous work (e.g.,

(Brunel & Hakim, 1999; Lindner et al., 2005)), long delays and a strong and focused driving

force are conducive to oscillatory behavior. Our work is consistent with this observation,

and goes one step further by presenting closed form discrete time approximations to the full

dynamics described through the continuous time FP equation. While the formalism provides

an almost exact description of the dynamics in the limit of large delays and focused drive,

we have shown by careful numerical solutions of the FP equations that they hold across a

broad range of parameters, beyond the limit where they are mathematically justified. The

approach quantifies the precise degree to which the different system parameters contribute

to the emergence of oscillations, thereby quantifying the interplay between internal feedback

and external drive required to produce oscillations.

Previous work demonstrated that inhibition contributes to oscillations in networks of

spiking neurons. This earlier work focused mainly on two types of regimes. The first,

corresponding to a synchronous oscillation mode (e.g., (Vreeswijk, Abbott, & Ermentrout,

1994; Wang & Buzsáki, 1996)), occurs when single neurons fire at a rate which is close

to the frequency of the network oscillation; a situation often referred to as spike-to-spike

synchronization. The second, so-called irregular mode, takes place when a fast network

rhythm is generated, while single neurons fire sparsely and asynchronously (Brunel, 2000;
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Brunel & Hakim, 1999, 2008). In both cases the network fires at fast rates, and inhibitory

delays do not play a role in the synchronization. The regime described in Section 3.1 is

different in that it assumes long delays and leads to slow inhibitory driven oscillations with

a period which is much longer than the typical neuronal time scales. Given the complexity

and variety of neuronal oscillations (Buzsáki, 2006), there are clearly oscillation regimes for

which a theoretical understanding is still lacking.

While it is difficult to conduct physiological experiments which directly address the de-

pendence of oscillation properties on the delay, some early work (Glass, Beuter, & Larocque,

1988) related to human motor behavior with visual feedback is relevant to our results. In

this study human subject were asked to maintain a constant finger position relative to a

stationary baseline, while increasing time delays (between 40 and 1,500 msec) were intro-

duced in the visual feedback. As the time delay increased periodic behavior is observed,

with oscillation periods which were consistently between 2 to 4 times the time delay. This

behavior is consistent with our prediction for the dependence of the oscillation period on the

temporal delay.

The mathematical analysis of the nonlinear FP equation describing the mean-field be-

havior of networks of spiking neurons has focused in the past mainly on the steady state

and on linear stability analysis. Dealing with the full dynamical behavior is very difficult in

general, but can be simplified considerably in appropriate limits, such as the limit consid-

ered in this work. The extension of the approach presented here to more realistic situations,

e.g., multiple populations, heterogeneous networks, realistic architectures, time-dependent

inputs, etc., forms an open research program.

Appendix A: The full asymptotic expansion of G

Denote h = A/B . If h < 1 and h/(1−h)2 < B, then, after much manipulation, the derivative

of P0 at v = 1 can be expanded in a series of the form

−∂P0(v, t)

∂v

∣

∣

∣

∣

v=1

= −hB

[

log(1 − h) −
n

∑

k=1

(

− h

B

)k

ak

[

(1 − h)−2k − 1
]

+ O

(

h

B(1 − h)2

)n+1
]−1

,

where the coefficients ak can be computed explicitly, yielding:

a1 = 0.5, a2 = 0.75, a3 = 2.5, a4 = 13.125, . . .
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The series of coefficients diverges, however, by taking a finite number of terms we can obtain

a highly accurate approximation so long as the term h/B(1− h)2 is small compared to one.

Fixing B and expanding in small h, we obtain

−∂P0(v, t)

∂v

∣

∣

∣

∣

v=1

=
m

∑

k=0

bkh
k + O(hm+1) , (22)

with

b0 = B ; b1 = 1 − B

2
; b2 =

1

2
− 2

B
− B

12
; b3 =

7

12
+

10

B2
− 3

B
− B

24
; · · ·

Appendix B: The Numerical Solver

Equation (6) is somewhat non-standard, due to the delay and the non-local boundary condi-

tions. This, and the requirement for conservation of the probability, require careful handling.

We therefore present a detailed description of the numerical solver for completeness.

The equation is discretized on a mesh of NV − 1 intervals, employing a conserving finite-

difference discretization. Although the actual problem extends to v = −∞, the finite-grid

approximation can be made as accurate as we wish (due to the fact that the solution decays

like a Gaussian as v → −∞) by employing the following approach. First, we choose some

finite minimal value of v, denoted vmin, to represent −∞. Then, we replace the boundary

condition P (−∞, t) = 0 with the condition S(vmin, t) = 0. This allows us to maintain exact

conservation of the integral of P (assuming exact arithmetic.) During the solve phase we

verify that P (vmin, t) is smaller than some prescribed threshold value at all times, and if it is

not, then we extend the domain by reducing vmin until this condition is satisfied.

We use k and n to denote the indices along the v and t coordinates, respectively. We

employ a uniform grid with mesh-size ∆v and time-interval ∆t. The discrete probability

distribution, Pk,n, is defined at mesh-points, hence indexed by integer values, 1 ≤ k ≤ NV ,

while the flux, S, and the boundary conditions, are defined at interval centers, halfway

between mesh-points: 1 < k + 1
2

< NV .

We solve the discretized PDE using an implicit backward-Euler time-stepping scheme

(Strikwerda, 2007). This leads to a system that is nearly tridiagonal, but possibly modified

slightly due to the nonlocal boundary conditions. Let us write the flux generically as
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Figure 7: The numerical grid used for the FP equation; see main text for motivation of the scheme,

and definitions of the variables.

S(v, t) = −
(

F (v, t)P (v, t) + D(t)
∂

∂v
P (v, t)

)

,

and denote by Fk,n as the discrete version of F (v, t) and by Dn the discrete version of D(t).

The discrete form of the flux is then given by

Sk+ 1
2
,n = −

(

Dn(Pk+1,n − Pk,n)

∆v
+ Fk+ 1

2
,n

Pk+1,n + Pk,n

2

)

. (23)

Except at special points (the ghost points 1 and NV , that lie just outside the boundaries,

and the mesh point NVr
where the outgoing flux is injected), we thus obtain the following

scheme:

Pk,n − Pk,n−1

∆t
= −

(

Sk+ 1
2
,n − Sk− 1

2
,n

∆v

)

=Dn

Pk+1,n − 2Pk,n + Pk−1,n

∆v2

+ Fk+ 1
2
,n

(

Pk+1,n + Pk,n

2∆v

)

− Fk− 1
2
,n

(

Pk,n + Pk−1,n

2∆v

)

,

(24)
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which leads to the tridiagonal form:

Pk,n−1
1

∆t
=Pk−1,n

(

Fk− 1
2
,n

2∆v
− Dn

∆v2

)

+ Pk,n

(

1

∆t
+

2Dn

∆v2
−

Fk+ 1
2
,n − Fk− 1

2
,n

2∆v

)

+ Pk+1,n

(

− Dn

∆v2
−

Fk+ 1
2
,n

2∆v

)

.

(25)

At the left-hand boundary, we apply the condition

S1+ 1
2
,n = 0 , (26)

which yields

P1,n

(

−
F1+ 1

2
,n

2∆v
+

Dn

∆v2

)

+ P2,n

(

−
F1+ 1

2
,n

2∆v
− Dn

∆v2

)

= 0 .

The vanishing of P at the right-hand boundary is discretized by

PNV −1,n + PNV ,n

2
= 0.

Finally, we need to compute the outgoing flux and re-inject it at mesh-point NVr
after time

lag τref . Using (23), the discrete outgoing flux is given by

SNV − 1
2
,n = −

(

Dn

PNV ,n − PNV −1,n

∆v
+ FNV − 1

2
,n(PNV ,n + PNV −1,n)

)

=PN

(

−Dn

∆v
− FNV − 1

2
,v

)

+ PNV −1,n

(

+
Dn

∆v
− FNV − 1

2
,n

)

.

(27)

Finally, we modify (25) at the mesh-point NVr
to reflect the injection of the flux,

PNVr−1,n

(

FN
Vr−

1
2 ,n

2∆v
− Dn

∆v2

)

+ PNVr ,n

(

1

∆t
+

2Dn

∆v2
−

FNVr+ 1
2
,n − FNVr−

1
2
,n

2∆v

)

+

PNVr+1,n

(

− Dn

∆v2
−

FNVr+ 1
2
,n

2∆v

)

= PNVr ,n−1
1

∆t
+

1

∆v
S

N− 1
2
, n−

τref
∆t

, (28)

where we have assumed that τref is an integer multiple of ∆t. Note that in the special case of

τref = 0 the resulting system is not longer tridiagonal. However, its solution requires only a

slight modification of the classical highly efficient Thomas algorithm for tridiagonal systems.
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Beginning with prescribed initial conditions, the numerical solution is computed by solv-

ing a simple linear system per time level. It is easy to verify that the discretization conserves

(in exact arithmetic) the sum of Pk,n over the internal part of the domain for all n. Of course

the initial conditions are prescribed such that this sum times ∆V is equal to 1.
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Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science,

304 (5679), 1926–1929.

Cortes, J. M., Torres, J. J., Marro, J., Garrido, P. L., & Kappen, H. J. (2006). Effects of

fast presynaptic noise in attractor neural networks. Neural Comput, 18, 614–633.

Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchro-

nizing action of corticothalamic feedback through inhibition of thalamic relay cells. J

Neurophysiol, 79 (2), 999–1016.

Ferster, D., & Lindström, S. (1983). An intracellular analysis of geniculo-cortical connectivity

in area 17 of the cat. J Physiol, 342, 181–215.

Gerstner, W., & Kistler, W. (2002). Spiking neuron models. Cambridge University Press.

Glass, L., Beuter, A., & Larocque, D. (1988). Time delays, oscillations, and chaos in

physiological control systems. Mathematical Biosciences, 90, 111-125.

Glass, L., & Mackey, M. (1988). From clocks to chaos. Princeton University Press.

Harvey, A. (1980). A physiological analysis of subcortical and commissural projections of

areas 17 and 18 of the cat. J Physiol, 507-534.

25



Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system.

J Neurophysiol, 93 (3), 1671–1698.

Lindner, B., Doiron, B., & Longtin, A. (2005). Theory of oscillatory firing induced by

spatially correlated noise and delayed inhibitory feedback. Phys Rev E Stat Nonlin

Soft Matter Phys, 72, 061919.

Marinazzo, D., Kappen, H., & Gielen, S. (2007). Input-driven oscillations in networks with

excitatory and inhibitory neurons with dynamic synapses. Neural Comput, 19 (7),

1739–1765.

Miller, R. (1996). Cortico-thalamic interplay and the security of operation of neural assem-

blies and temporal chains in the cerebral cortex. Biol Cybern, 75, 263–275.

Murray, J. D. (2002). Mathematical biology (Third ed.). Springer.

Renart, A., Brunel, N., & Wang, X. (2003). In J. Feng (Ed.), Computational neuroscience:

A comprehensive approach (p. 432-490). CRC Press.

Risken, H. (1996). The fokker-planck equation: Methods of solutions and applications (Sec-

ond ed.). Springer.

Roxin, A., Brunel, N., & Hansel, D. (2005). Role of delays in shaping spatiotemporal

dynamics of neuronal activity in large networks. Phys Rev Lett, 94 (23), 238103.

Strikwerda, J. C. (2007). Finite difference schemes and partial differential equations (Second

ed.). SIAM.

Strogatz, S. (2001). Nonlinear dynamics and chaos: with applications to physics, biology,

chemistry and engineering. Perseus Books Group.

Swadlow, H. A. (1991). Efferent neurons and suspected interneurons in second somatosensory

cortex of the awake rabbit: receptive fields and axonal properties. J Neurophysiol, 66,

1392–1409.

Tuckwell, H. (1989). Stochastic processes in the neurosciences. SIAM.

Vogels, T., Rajan, K., & Abbott, L. (2005). Neural network dynamics. Annu. Rev. Neurosci.,

28, 357-376.

Vreeswijk, C. V., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation

synchronizes neural firing. J Comput Neurosci, 1 (4), 313–321. (n1224)
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