Topics in Automated Theorem Proving

Course (236714, 2013/14)

Johann A. Makowsky*

* Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel janos@cs.technion.ac.il

Course homepage http://www.cs.technion.ac.il/~janos/COURSES/THPR

File:title.tex

236714

Lecture 8:

The field of complex numbers $\langle \mathbb{C}, +, -, \times, ^{-1}, 0, 1 \rangle$ allows elimination of quantifiers

> A. Tarski (1948); M. Chevalley (1955) The proof here is after
> G. Kreisel and J.-L. Krivine (1966)
> and D. Delahaye and M. Mayero (2006)

Fields
$$\mathcal{K} = \langle K, +, -, \times, 0, 1 \rangle$$
 without $^{-1}$

+ and × are binary function symbols, 0,1 are constant symbols, and – is a unary function symbol. We may include the unary function symbol $^{-1}$ with $\forall x(x = 0 \lor (x \times x^{-1} = 1))$. We will later write xy for $(x \times y)$

Two elements: $0 \neq 1$

Associativity:

 $\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$ $\forall x \forall y \forall z (x \times (y \times z) = (x \times y) \times z)$

Commutativity:

 $\forall x \forall y (x + y = y + x) \\ \forall x \forall y (x \times y = y \times x)$

Distributivity:

 $\forall x \forall y \forall z (x \times (y+z) = (x \times y) + (x \times z))$

Inverses:

$$\forall x(x + 0 = x) \forall x(x + (-x) = 0) \forall x(x \times 0 = 0) \forall x \exists y(x = 0 \lor x \times y = 1)$$

Terms in a field

Structures \mathcal{K} satisfying these axioms are called fields.

We use the following for arbitrary fields \mathcal{K} :

- We write p for the term $\underbrace{1+1+\ldots+1}_{p}$.
- We write t^p for the term $\underbrace{t+t+\ldots+t}_p$.
- Constant terms are identified with integers \mathbb{Z} .
- Every term $t(x\bar{y})$ with free variables x and $\bar{y} = (y_0, y_1, \dots, y_\ell)$ can be written in polynomial normal form

$$t(x,\bar{y}) = \sum_{k=0}^{m} t_k(\bar{y}) x^k$$

where in the terms t_k the variable x does not occur.

Algebraically closed fields of characteristic p

The charactersitic p is either 0 or a prime p.

Characteristic *p*: A field \mathcal{K} has charactersitic *n* for $n \in \mathbb{N}, n \neq 0$ if in \mathcal{K} we have $\underbrace{1+1+\ldots+1}_{p} = 0$.

Charactersitic 0: A field \mathcal{K} has charactersitic 0 if for no $n \in \mathbb{N}, n \neq 0$ it has charactersitic n.

Algebraic closure: A field \mathcal{K} is algebraically closed if in \mathcal{K} the following holds for all $m \in \mathbb{N}$:

$$\forall y_0 \forall y_1 \dots \forall y_{m-1} \exists x \left(\sum_{k=0}^{m-1} y_k x^k \right) + x^m = 0$$

Ernst Steinitz (1871 – 1928);

Algebraische Theorie der Körper, Crelle J. of Math. (1910) pp. 167–309

A field \mathcal{K} is an algebraic extension of a field \mathcal{K}_0 if every element of \mathcal{K} is the root of a univariate polynomial with coefficients in \mathcal{K}_0 .

A field ${\mathcal C}$ is an algebraic closure of a field ${\mathcal K}$ if

- ${\mathcal C}$ is an algebraic extension of ${\mathcal K},$ and
- \mathcal{C} is algebraically closed.

 \mathbb{C} is an algebraic closure of \mathbb{R} . The algebraic numbers \mathbb{A} are an algebraic closure of \mathbb{Q} .

Theorem St-1: Every field \mathcal{K} has, up to isomorphism, a unique algebraic closure.

Theorem St-2: Any two uncountable algebraically closed fields of the same characteristic and cardinality are isomorphic.

The axioms of algebraically closed fields of characteristic p.

We denote by ACF_p the axioms consisting of the field axioms, stating that the characteristic is p or 0, and stating that every univariate polynomial has a root.

- ACF_p is an infinite set. No finite subset of ACF_p logically implies it.
- ACF_p is a complete theory, i.e., for every sentence in the language of fields ϕ we have

$$\mathsf{ACF}_p \models \phi \text{ or } \mathsf{ACF}_p \models \neg \phi$$

To prove completeness we use Thoerem St-2 and the Löwenheim-Skolem Theorem.

This type of proof is called Vaught's test.

QE: The crucial step (in characteristic 0)

Let $P_i(x, \bar{y})$: i = 1, ..., n and $Q_i(x, \bar{y})$: i = 1, ..., m be polynomials in a polynomial ring $\mathcal{K}[x, \bar{y}]$ over a field \mathcal{K} .

We look at the formula

$$\Phi(\bar{y}) = \exists x \left(\bigwedge_{i=1}^{n} P_i(x, \bar{y}) = 0 \land \bigwedge_{j=1}^{m} Q_j(x, \bar{y}) \neq 0 \right)$$

We want to find a finite set of polynomials $E_i(\bar{y}), i \in I$ without the indeterminate x and a boolean formula $B(b_i), i \in I$ such that for the assignment

$$b_i(\bar{y}) := (E_i(\bar{y}) = 0)$$

we have:

For all fields $\mathcal{K} \models \mathsf{ACF}_0$ and for all elements $\overline{a} \in \mathcal{K}$

$$\mathcal{K} \models \Phi(\bar{a}) \text{ iff } \mathcal{K} \models B(E_i(\bar{a}))$$

We need some algebra!

Polynomial degree and division

Let ${\mathcal K}$ be a field.

- The degree of a polynomial $P(x) = \sum_{i=0}^{d} a_i x^i \in \mathcal{K}[x]$ with $a_d \neq 0$ is d. We denote the degree of P by deg(P).
- Let $P, Q \in \mathcal{K}[x]$ be two polynomials. We say that P divides Q if there is $R \in \mathcal{K}[x]$ such that $P \cdot R = Q$ (in $\mathcal{K}[x]$).
- Let $P, Q \in \mathcal{K}[x]$ be two polynomials. Then there are unique polynomials $R, S \in \mathcal{K}[x]$ such that $Q = P \cdot R + S$

R and S can be computed (in symbolic computation) by the Euclidean algorithm.

We denote by gcd(P,Q) the unique polynomial of biggest possible degree S such that S divides both P and Q.
 gcd(P,Q) can be computed by the Euclidean algorithm.

Algorithmic Algebra

```
@book{waer:48,
author= {Waerden, B.L.~van der},
title= {Modern Algebra},
publisher= {Frederick Ungar Publishing Co., New York},
year= 1948
}
@book{gage:99,
author= {Gathen, J.~von zur and J.~Gerhard},
title= {Modern Computer Algebra},
publisher= {Cambridge University Press},
year= 1999
}
```

More algorithmic algebra

Let \mathcal{K} be a field of characteristic 0.

AA-1: Let $P, Q \in \mathcal{K}[x]$ with $P \neq 0$ and $Q \neq 0$, and G = gcd(P,Q). Then $\exists x(P(x) = 0 \land Q(x) = 0)$ iff $\exists xG(x) = 0$.

AA-2: Let $Q \in \mathcal{K}[x]$ with $Q \neq 0$. Then $\exists x Q(x) \neq 0$.

- **AA-3:** Let $P, Q \in \mathcal{K}[x]$ with $P \neq 0$ and $Q \neq 0$, and gcd(P,Q) = 1 (relatively prime). Then $\exists x P(x) = 0 \land Q(x) \neq 0$ iff $\exists x P(x) = 0$.
- **AA-4:** Let $P, Q \in \mathcal{K}[x]$ with $P \neq 0$ and $Q \neq 0$, G = gcd(P,Q), and $P_1(x)$ with $P(x) = G(x) \cdot P_1(x)$. Then $\exists x (P(x) = 0 \land Q(x) \neq 0)$ iff $\exists x (P_1(x) = 0 \land G(x) \neq 0)$.
- **AA-5:** Let P(x), Q(x), G(x) and $P_1(x)$ are as in AA-4. If $G(x) \neq 1$ (P, Q are not relatively prime), then deg($P_1(x)$) < deg(P(x)).

Constant polynomials and polynomials without roots

Let $P(x, \bar{y}) = \sum_{i=0}^{n} t_i(\bar{y}) x^i \in \mathcal{K}[\bar{y}][x]$ be a univariate polynomial over $\mathcal{K}[\bar{y}]$. Here, the indeterminates \bar{y} are parameters.

• $P(x, \overline{y})$ is independent of x if there is $a \in \mathcal{K}[\overline{y}]$ such that for all x the equation $P(x, \overline{y}) = a$ holds. In other words

$$Const(P, \bar{y}, a(\bar{y})) := \forall x P(x, \bar{y}) = a(\bar{y})$$

• $P(x, \bar{y})$ has no solution for x if there is no $a \in \mathcal{K}[\bar{y}]$ such that for all x the equation $P(x, \bar{y}) = a(\bar{y})$ holds. In other words

 $Nosol(P, \bar{y}) := \forall x P(x, \bar{y}) \neq 0$

Constant polynomials and polynomials without roots (AA-0)

Here we use ACF_0 .

• Const (P, \bar{y}, a) can be written quantifier-free:

$$\operatorname{Const}(P,\bar{y},a) := \left(t_0(\bar{y}) = a \land \bigwedge_{i=1}^n t_i(\bar{y}) = 0 \right)$$

• Nosol (P, \overline{y}) can be written quantifier-free:

Nosol
$$(P, \bar{y}) := \left(t_0(\bar{y}) \neq 0 \land \bigwedge_{i=1}^n t_i(\bar{y}) = 0 \right)$$

- Const (P, \overline{y}, a) and Nosol (P, \overline{y}) are equivalent to a conjunction of polynomial equations or inequalities.
- Their negations are equivalent to a disjunction of polynomial equations or inequalities.

QE-I:
$$\Phi(\bar{y}) = \exists x \left(\bigwedge_{i=1}^{n} P_i(x, \bar{y}) = 0 \land \bigwedge_{j=1}^{m} Q_j(x, \bar{y}) \neq 0 \right)$$

We write it simpler by using $P(x) = \text{gcd}(P_i, i = 1, ..., n)$ and $Q(x) = \prod_{j=1}^m Q_j(x)$.

n = 0, m > 0: We use AA-0 and AA-2: $\exists xQ(x) \neq 0$ is equivalent to $\neg \forall xQ(x) = 0$, or equivalently, to $\neg \text{Const}(Q, \bar{y}, 0)$ with $Q(x) = \sum_{j=0}^{m} s_j(\bar{y}) x^j$. This can be written as

$$\left(s_0(\bar{y}) \neq 0 \lor \bigvee_{j=1} s_j(\bar{y}) \neq 0\right)$$

(with the remaining free variables \bar{y} free).

This is now a **disjunction** of inequalities.

QE-II:
$$\Phi(\bar{y}) = \exists x \left(\bigwedge_{i=1}^{n} P_i(x, \bar{y}) = 0 \land \bigwedge_{j=1}^{m} Q_j(x, \bar{y}) \neq 0 \right)$$

n > 0, m = 0:

We use AA-0, AA-1 and ACF_0 :

 $\exists x P(x) = 0$ is equivalent to $\neg \text{Nosol}(P, \overline{y})$. For $P(x) = \sum_{j=0}^{n} t_i(\overline{y}) x^i$ this can be written as

$$\left(t_0(\bar{y})=0\lor\bigvee_{i=1}^nt_i(\bar{y})\neq 0
ight)$$

(with the remaining free variables \bar{y} free).

This is now again a disjunction of equations and inequalities.

QE-III:
$$\Phi(\bar{y}) = \exists x \left(\bigwedge_{i=1}^{n} P_i(x, \bar{y}) = 0 \land \bigwedge_{j=1}^{m} Q_j(x, \bar{y}) \neq 0 \right)$$

$$\begin{array}{l} n > 0, m > 0: \\ \text{Let } G(x) = \gcd(P,Q) \text{ and } P_1(x) \text{ such that } P(x) = G(x) \cdot P_1(x). \\ \text{We use AA-0, AA-4 and AA-5:} \\ \Phi(\bar{y}) \text{ is equivalent to} \\ \begin{bmatrix} (\operatorname{Const}(P,x,0) \land \neg \operatorname{Const}(Q,x,0)) & \lor \\ (\operatorname{Const}(G,x,1) \land \neg \operatorname{Noso}(P,x)) & \lor \\ \exists x(P_1(x,\bar{y}) = 0 \land G(x,\bar{y}) \neq 0) \end{bmatrix} \end{array}$$

For each of the disjuncts we know how to eliminate the quantifier, either by AA-0, AA-0, AA-1, AA-3 ACF₀, or, noting that G and P_1 have lower degrees, by AA-4, AA-5.

What do we need to prove AA-1 to AA-5?

Étienne Bézout (1730-1783)

Bézout's identity:

Let $P(x), Q(x) \in \mathcal{K}[x]$ with $G(x) = \gcd(P(x), Q(x))$. There exist $A(x), B(x) \in \mathcal{K}[x]$ such that $A(x) \cdot P(x) + B(x) \cdot Q(x) = G(x)$.

The proof uses again the Euclidean Algorithm.

It works in any ring which is a principal ideal domain, i.e., a ring in which for $a \neq 0, b \neq 0$ also $ab \neq 0$, and every ideal is generated by a single element.

Eliminating inequalties

We can also first eliminate inequalities.

- We note that $Q_j(x, \bar{y}) \neq 0$ is equivalent to $\exists z_j(z_j \cdot Q_j(x, \bar{y}) 1 = 0)$
- We apply this to Φ : $\Phi(\bar{y}) = \exists x \left(\bigwedge_{i=1}^{n} P_i(x, \bar{y}) = 0 \land \bigwedge_{j=1}^{m} Q_j(x, \bar{y}) \neq 0 \right)$ and get $\exists x \left(\bigwedge_{i=1}^{n} P_i(x, \bar{y}) = 0 \land \bigwedge_{j=1}^{m} \exists z_j (z_j \cdot Q_j(x, \bar{y}) - 1 = 0) \right)$. which is equivalent to

$$\exists \overline{z} \ \exists x \left(\bigwedge_{i=1}^{n} P_i(x, \overline{y}) = 0 \land \bigwedge_{j=1}^{m} (z_j \cdot Q_j(x, \overline{y}) - 1 = 0) \right)$$

• However, this introduces new existential quantifiers!

Handling the multiplicative inverse $^{-1}$

If we add the inverse function $^{-1}$ we can also eliminate it.

• Axiom for $^{-1}$:

$$\forall x (x \neq 0 \rightarrow (x \cdot x^{-1} = x^{-1} \cdot x = 1))$$

- To make it a function we postulate $0^{-1} = 0$.
- Constant terms are now rational numbers.
- To eliminate ⁻¹ we observe:

Lemma:

Every atomic formula with rational coefficients is equivalent to an atomic formula with integer coefficients.

Fields with QE

AA-0 - AA-5 hold in all fields.

The crucial elimination is in the formula $\exists x P(x, \bar{y}) = 0$.

- In the field of the reals \mathbb{R} the formula $\exists x(x^2 = y)$ is only true for $y \ge 0$.
- \bullet In the field of the rational ${\mathbb Q}$ solvability of polynomial equations is very complicated.
- We have seen in the last lecture that for every field \mathcal{K} in the language of fields the theory $\mathsf{Th}(\mathcal{K})$ is undecidable

Characterizing fields ${\cal K}$ with QE

A. MacIntyre (1971), A. MacIntyre, K. McKenna and L. van den Dries (1983)

Theorem:

Let \mathcal{K} be in the language of fields (without order)

```
such that Th(\mathcal{K}) admits QE.
```

Then \mathcal{K} is either **finite** or **algebraically closed**.

Complexity

We have two questions of complexity:

- Given ϕ , how long does a Turing machine have to work to produce a quantifier free equivalent of ϕ ?
- Given ϕ , how long is the shortest quantifier free equivalent of ϕ ?