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Lecture 8:

———————–

The field of complex numbers 〈C,+,−,×,−1 ,0,1〉

allows elimination of quantifiers

———————–

A. Tarski (1948); M. Chevalley (1955)
The proof here is after

G. Kreisel and J.-L. Krivine (1966)
and D. Delahaye and M. Mayero (2006)
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Fields K = 〈K,+,−,×,0,1〉 without −1

+ and × are binary function symbols, 0,1 are constant symbols, and − is a unary function
symbol. We may include the unary function symbol −1 with ∀x(x = 0 ∨ (x× x−1 = 1)).
We will later write xy for (x× y)

Two elements: 0 6= 1

Associativity:
∀x∀y∀z(x+ (y + z) = (x+ y) + z)
∀x∀y∀z(x× (y × z) = (x× y)× z)

Commutativity:
∀x∀y(x+ y = y + x)
∀x∀y(x× y = y × x)

Distributivity:
∀x∀y∀z(x× (y + z) = (x× y) + (x× z))

Inverses:
∀x(x+ 0 = x)
∀x(x+ (−x) = 0)
∀x(x× 0 = 0)
∀x∃y(x = 0 ∨ x× y = 1)
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Terms in a field

Structures K satisfying these axioms are called fields.

We use the following for arbitrary fields K:

• We write p for the term 1 + 1 + . . .+ 1︸ ︷︷ ︸
p

.

• We write tp for the term t+ t+ . . .+ t︸ ︷︷ ︸
p

.

• Constant terms are identified with integers Z.

• Every term t(xȳ) with free variables x and ȳ = (y0, y1, . . . , y`) can be
written in polynomial normal form

t(x, ȳ) =
m∑
k=0

tk(ȳ)xk

where in the terms tk the variable x does not occur.
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Algebraically closed fields of characteristic p

The charactersitic p is either 0 or a prime p.

Characteristic p: A field K has charactersitic n for n ∈ N, n 6= 0 if in K we
have 1 + 1 + . . .+ 1︸ ︷︷ ︸

p

= 0.

Charactersitic 0: A field K has charactersitic 0 if for no n ∈ N, n 6= 0 it has
charactersitic n.

Algebraic closure: A field K is alegebraically closed if in K the following
holds for all m ∈ N:

∀y0∀y1 . . . ∀ym−1∃x

m−1∑
k+0

ykx
k

+ xm = 0
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Ernst Steinitz (1871 – 1928);

Algebraische Theorie der Körper, Crelle J. of Math. (1910) pp. 167–309

A field K is an algebraic extension of a field K0 if every
element of K is the root of a univariate polynomial with
coefficients in K0.

A field C is an algebraic closure of a field K if
• C is an algebraic extension of K, and
• C is algebraically closed.

C is an algebraic closure of R.
The algebraic numbers A are an algebraic closure of Q.

Theorem St-1: Every field K has, up to isomorphism, a unique algebraic
closure.

Theorem St-2: Any two uncountable algebraically closed fields of the
same characteristic and cardinality are isomorphic.
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The axioms of algebraically closed fields of characteristic p.

We denote by ACFp the axioms consisting of the field axioms,
stating that the characteristic is p or 0, and
stating that every univariate polynomial has a root.

• ACFp is an infinite set. No finite subset of ACFp logically implies it.

• ACFp is a complete theory, i.e., for every sentence in the language of
fields φ we have

ACFp |= φ or ACFp |= ¬φ

To prove completeness we use Thoerem St-2 and the Löwenheim-Skolem
Theorem.

This type of proof is called Vaught’s test.
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QE: The crucial step (in characteristic 0)

Let Pi(x, ȳ) : i = 1, . . . , n and Qi(x, ȳ) : i = 1, . . . ,m be polynomials in a
polynomial ring K[x, ȳ] over a field K.

We look at the formula

Φ(ȳ) = ∃x

 n∧
i=1

Pi(x, ȳ) = 0 ∧
m∧
j=1

Qj(x, ȳ) 6= 0


We want to find a finite set of polynomials Ei(ȳ), i ∈ I without the indeter-
minate x and a boolean formula B(bi), i ∈ I such that for the assignement

bi(ȳ) := (Ei(ȳ) = 0)

we have:

For all fields K |= ACF0 and for all elements ā ∈ K

K |= Φ(ā) iff K |= B(Ei(ā))

We need some algebra!
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Polynomial degree and division

Let K be a field.

• The degree of a polynomial P (x) =
∑d

i=0 aix
i ∈ K[x] with ad 6= 0 is d.

We denote the degree of P by deg(P ).

• Let P,Q ∈ K[x] be two polynomials. We say that P divides Q if there is
R ∈ K[x] such that P ·R = Q (in K[x]).

• Let P,Q ∈ K[x] be two polynomials. Then there are unique polynomials
R,S ∈ K[x] such that Q = P ·R+ S

R and S can be computed (in symbolic computation)
by the Euclidean algorithm.

• We denote by gcd(P,Q) the unique polynomial of biggest possible degree
S such that S divides both P and Q.

gcd(P,Q) can be computed by the Euclidean algorithm.
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Algorithmic Algebra

@book{waer:48,
author= {Waerden, B.L.~van der},
title= {Modern Algebra},
publisher= {Frederick Ungar Publishing Co., New York},
year= 1948
}

@book{gage:99,
author= {Gathen, J.~von zur and J.~Gerhard},
title= {Modern Computer Algebra},
publisher= {Cambridge University Press},
year= 1999
}
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More algorithmic algebra

Let K be a field of characteristic 0.

AA-1: Let P,Q ∈ K[x] with P 6= 0 and Q 6= 0, and G = gcd(P,Q).
Then ∃x(P (x) = 0 ∧Q(x) = 0) iff ∃xG(x) = 0.

AA-2: Let Q ∈ K[x] with Q 6= 0. Then ∃xQ(x) 6= 0.

AA-3: Let P,Q ∈ K[x] with P 6= 0 and Q 6= 0,
and gcd(P,Q) = 1 (relatively prime).
Then ∃xP (x) = 0 ∧Q(x) 6= 0 iff ∃xP (x) = 0.

AA-4: Let P,Q ∈ K[x] with P 6= 0 and Q 6= 0, G = gcd(P,Q),
and P1(x) with P (x) = G(x) · P1(x).
Then ∃x(P (x) = 0 ∧Q(x) 6= 0) iff ∃x(P1(x) = 0 ∧G(x) 6= 0).

AA-5: Let P (x), Q(x), G(x) and P1(x) are as in AA-4.
If G(x) 6= 1 (P,Q are not relatively prime), then deg(P1(x)) < deg(P (x)).
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Constant polynomials and polynomials without roots

Let P (x, ȳ) =
∑n

i=0 ti(ȳ)xi ∈ K[ȳ][x] be a univariate polynomial over K[ȳ].
Here, the indeterminates ȳ are parameters.

• P (x, ȳ) is independent of x if there is a ∈ K[ȳ] such that for all x the
equation P (x, ȳ) = a holds. In other words

Const(P, ȳ, a(ȳ)) := ∀xP (x, ȳ) = a(ȳ)

• P (x, ȳ) has no solution for x if there is no a ∈ K[ȳ] such that for all x the
equation P (x, ȳ) = a(ȳ) holds. In other words

Nosol(P, ȳ) := ∀xP (x, ȳ) 6= 0
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Constant polynomials and polynomials without roots (AA-0)

Here we use ACF0.

• Const(P, ȳ, a) can be written quantifier-free:

Const(P, ȳ, a) :=

(
t0(ȳ) = a ∧

n∧
i=1

ti(ȳ) = 0

)

• Nosol(P, ȳ) can be written quantifier-free:

Nosol(P, ȳ) :=

(
t0(ȳ) 6= 0 ∧

n∧
i=1

ti(ȳ) = 0

)

• Const(P, ȳ, a) and Nosol(P, ȳ) are equivalent to
a conjunction of polynomial equations or inequalities.

• Their negations are equivalent to
a disjunction of polynomial equations or inequalities.
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QE-I: Φ(ȳ) = ∃x
(∧n

i=1 Pi(x, ȳ) = 0 ∧
∧m
j=1Qj(x, ȳ) 6= 0

)

We write it simpler by using
P (x) = gcd(Pi, i = 1, . . . , n) and Q(x) =

∏m
j=1Qj(x).

n = 0,m > 0:
We use AA-0 and AA-2:

∃xQ(x) 6= 0 is equivalent to ¬∀xQ(x) = 0,
or equivalently, to ¬Const(Q, ȳ,0) with Q(x) =

∑m
j=0 sj(ȳ)xj. This can

be written as s0(ȳ) 6= 0 ∨
∨
j=1

sj(ȳ) 6= 0


(with the remaining free variables ȳ free).

This is now a disjunction of inequalities.
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QE-II: Φ(ȳ) = ∃x
(∧n

i=1 Pi(x, ȳ) = 0 ∧
∧m
j=1Qj(x, ȳ) 6= 0

)

n > 0,m = 0:
We use AA-0, AA-1 and ACF0:

∃xP (x) = 0 is equivalent to ¬Nosol(P, ȳ).
For P (x) =

∑n
j=0 ti(ȳ)xi this can be written as(

t0(ȳ) = 0 ∨
n∨
i=1

ti(ȳ) 6= 0

)
(with the remaining free variables ȳ free).

This is now again a disjunction of equations and inequalities.
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QE-III: Φ(ȳ) = ∃x
(∧n

i=1 Pi(x, ȳ) = 0 ∧
∧m
j=1Qj(x, ȳ) 6= 0

)

n > 0,m > 0:
Let G(x) = gcd(P,Q) and P1(x) such that P (x) = G(x) · P1(x).

We use AA-0, AA-4 and AA-5:

Φ(ȳ) is equivalent to

[(Const(P, x,0) ∧ ¬Const(Q, x,0)) ∨
(Const(G, x,1) ∧ ¬Noso(P, x)) ∨
∃x(P1(x, ȳ) = 0 ∧G(x, ȳ) 6= 0)]

For each of the disjuncts we know how to eliminate the quantifier, either
by AA-0, AA-0, AA-1, AA-3 ACF0, or, noting that G and P1 have lower
degrees, by AA-4, AA-5.
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What do we need to prove AA-1 to AA-5?

Étienne Bézout (1730-1783)

Bézout’s identity:

Let P (x), Q(x) ∈ K[x] with G(x) = gcd(P (x), Q(x)).
There exist A(x), B(x) ∈ K[x] such that

A(x) · P (x) +B(x) ·Q(x) = G(x).

The proof uses again the Euclidean Algorithm.

It works in any ring which is a principal ideal domain, i.e.,

a ring in which for a 6= 0, b 6= 0 also ab 6= 0, and every ideal is generated by a

single element.
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Eliminating inequalties

We can also first eliminate inequalities.

• We note that Qj(x, ȳ) 6= 0 is equivalent to ∃zj(zj ·Qj(x, ȳ)− 1 = 0)

• We apply this to Φ: Φ(ȳ) = ∃x
(∧n

i=1 Pi(x, ȳ) = 0 ∧
∧m
j=1Qj(x, ȳ) 6= 0

)
and get ∃x

(∧n
i=1 Pi(x, ȳ) = 0 ∧

∧m
j=1 ∃zj (zj ·Qj(x, ȳ)− 1 = 0)

)
.

which is equivalent to

∃z̄ ∃x

 n∧
i=1

Pi(x, ȳ) = 0 ∧
m∧
j=1

(zj ·Qj(x, ȳ)− 1 = 0)


• However, this introduces new existential quantifiers!
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Handling the multiplicative inverse −1

If we add the inverse function −1 we can also eliminate it.

• Axiom for −1:

∀x(x 6= 0→ (x · x−1 = x−1 · x = 1))

• To make it a function we postulate 0−1 = 0.

• Constant terms are now rational numbers.

• To eliminate −1 we observe:

Lemma:
Every atomic formula with rational coefficients is equivalent to
an atomic formula with integer coefficients.
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Fields with QE

AA-0 – AA-5 hold in all fields.

The crucial elimination is in the formula ∃xP (x, ȳ) = 0.

• In the field of the reals R the formula ∃x(x2 = y) is only true for y ≥ 0.

• In the field of the rational Q solvability of polynomial equations is very
complicated.

• We have seen in the last lecture that for every field K in the language of
fields the theory Th(K) is undecidable
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Characterizing fields K with QE

A. MacIntyre (1971), A. MacIntyre, K. McKenna and L. van den Dries

(1983)

Theorem:

Let K be in the language of fields (without order)

such that Th(K) admits QE.

Then K is either finite or algebraically closed.

File:complexnumbers.tex 21



Technion, Fall semester 2013/14 236714

Complexity

We have two questions of complexity:

• Given φ, how long does a Turing machine have to work to produce a
quantifier free equivalent of φ?

• Given φ, how long is the shortest quantifier free equivalent of φ?
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