Topics in Automated Theorem Proving

Course (236714, 2013/14)

Johann A. Makowsky*
* Faculty of Computer Science, Technion - Israel Institute of Technology,
Haifa, Israel
janos@cs.technion.ac.il

Course homepage
http://www.cs.technion.ac.il/~janos/COURSES/THPR

Lecture 8:

The field of complex numbers $\left\langle\mathbb{C},+,-, \times,,^{-1}, 0,1\right\rangle$ allows elimination of quantifiers

```
A. Tarski (1948); M. Chevalley (1955)
            The proof here is after
    G. Kreisel and J.-L. Krivine (1966)
and D. Delahaye and M. Mayero (2006)
```

Fields $\mathcal{K}=\langle K,+,-, \times, 0,1\rangle$ without ${ }^{-1}$

+ and \times are binary function symbols, 0,1 are constant symbols, and - is a unary function symbol. We may include the unary function symbol ${ }^{-1}$ with $\forall x\left(x=0 \vee\left(x \times x^{-1}=1\right)\right)$. We will later write $x y$ for $(x \times y)$

Two elements: $0 \neq 1$

Associativity:

$$
\begin{aligned}
& \forall x \forall y \forall z(x+(y+z)=(x+y)+z) \\
& \forall x \forall y \forall z(x \times(y \times z)=(x \times y) \times z)
\end{aligned}
$$

Commutativity:

$$
\begin{aligned}
& \forall x \forall y(x+y=y+x) \\
& \forall x \forall y(x \times y=y \times x)
\end{aligned}
$$

Distributivity:

$$
\forall x \forall y \forall z(x \times(y+z)=(x \times y)+(x \times z))
$$

Inverses:

```
\(\forall x(x+0=x)\)
\(\forall x(x+(-x)=0)\)
\(\forall x(x \times 0=0)\)
\(\forall x \exists y(x=0 \vee x \times y=1)\)
```

Terms in a field

Structures \mathcal{K} satisfying these axioms are called fields.
We use the following for arbitrary fields \mathcal{K} :

- We write p for the term $\underbrace{1+1+\ldots+1}_{p}$.
- We write t^{p} for the term $\underbrace{t+t+\ldots+t}_{p}$.
- Constant terms are identified with integers \mathbb{Z}.
- Every term $t(x \bar{y})$ with free variables x and $\bar{y}=\left(y_{0}, y_{1}, \ldots, y_{\ell}\right)$ can be written in polynomial normal form

$$
t(x, \bar{y})=\sum_{k=0}^{m} t_{k}(\bar{y}) x^{k}
$$

where in the terms t_{k} the variable x does not occur.

Algebraically closed fields of characteristic p

The charactersitic p is either 0 or a prime p.

Characteristic p : A field \mathcal{K} has charactersitic n for $n \in \mathbb{N}, n \neq 0$ if in \mathcal{K} we have $\underbrace{1+1+\ldots+1}_{p}=0$.

Charactersitic 0: A field \mathcal{K} has charactersitic 0 if for no $n \in \mathbb{N}, n \neq 0$ it has charactersitic n.

Algebraic closure: A field \mathcal{K} is alegebraically closed if in \mathcal{K} the following holds for all $m \in \mathbb{N}$:

$$
\forall y_{0} \forall y_{1} \ldots \forall y_{m-1} \exists x\left(\sum_{k+0}^{m-1} y_{k} x^{k}\right)+x^{m}=0
$$

Ernst Steinitz (1871-1928);

Algebraische Theorie der Körper, Crelle J. of Math. (1910) pp. 167-309

A field \mathcal{K} is an algebraic extension of a field \mathcal{K}_{0} if every element of \mathcal{K} is the root of a univariate polynomial with coefficients in \mathcal{K}_{0}.
A field \mathcal{C} is an algebraic closure of a field \mathcal{K} if

- \mathcal{C} is an algebraic extension of \mathcal{K}, and
- \mathcal{C} is algebraically closed.
\mathbb{C} is an algebraic closure of \mathbb{R}.
The algebraic numbers \mathbb{A} are an algebraic closure of \mathbb{Q}.
Theorem St-1: Every field \mathcal{K} has, up to isomorphism, a unique algebraic closure.

Theorem St-2: Any two uncountable algebraically closed fields of the same characteristic and cardinality are isomorphic.

The axioms of algebraically closed fields of characteristic p.

We denote by ACF_{p} the axioms consisting of the field axioms, stating that the characteristic is p or 0 , and stating that every univariate polynomial has a root.

- $A C F_{p}$ is an infinite set. No finite subset of $A C F_{p}$ logically implies it.
- ACF_{p} is a complete theory, i.e., for every sentence in the language of fields ϕ we have

$$
\mathrm{ACF}_{p}=\phi \text { or } \mathrm{ACF}_{p} \models \neg \phi
$$

To prove completeness we use Thoerem St-2 and the Löwenheim-Skolem Theorem.

This type of proof is called Vaught's test.

QE: The crucial step (in characteristic 0)

Let $P_{i}(x, \bar{y}): i=1, \ldots, n$ and $Q_{i}(x, \bar{y}): i=1, \ldots, m$ be polynomials in a polynomial ring $\mathcal{K}[x, \bar{y}]$ over a field \mathcal{K}.

We look at the formula

$$
\Phi(\bar{y})=\exists x\left(\bigwedge_{i=1}^{n} P_{i}(x, \bar{y})=0 \wedge \bigwedge_{j=1}^{m} Q_{j}(x, \bar{y}) \neq 0\right)
$$

We want to find a finite set of polynomials $E_{i}(\bar{y}), i \in I$ without the indeterminate x and a boolean formula $B\left(b_{i}\right), i \in I$ such that for the assignement

$$
b_{i}(\bar{y}):=\left(E_{i}(\bar{y})=0\right)
$$

we have:
For all fields $\mathcal{K} \equiv$ ACF $_{0}$ and for all elements $\bar{a} \in \mathcal{K}$

$$
\mathcal{K} \models \Phi(\bar{a}) \text { iff } \mathcal{K} \models B\left(E_{i}(\bar{a})\right)
$$

We need some algebra!

Polynomial degree and division

Let \mathcal{K} be a field.

- The degree of a polynomial $P(x)=\sum_{i=0}^{d} a_{i} x^{i} \in \mathcal{K}[x]$ with $a_{d} \neq 0$ is d. We denote the degree of P by $\operatorname{deg}(P)$.
- Let $P, Q \in \mathcal{K}[x]$ be two polynomials. We say that P divides Q if there is $R \in \mathcal{K}[x]$ such that $P \cdot R=Q$ (in $\mathcal{K}[x]$).
- Let $P, Q \in \mathcal{K}[x]$ be two polynomials. Then there are unique polynomials $R, S \in \mathcal{K}[x]$ such that $Q=P \cdot R+S$
R and S can be computed (in symbolic computation) by the Euclidean algorithm.
- We denote by $\operatorname{gcd}(P, Q)$ the unique polynomial of biggest possible degree S such that S divides both P and Q. $\operatorname{gcd}(P, Q)$ can be computed by the Euclidean algorithm.

Algorithmic Algebra

```
@book{waer:48,
author= {Waerden, B.L. ~van der},
title= {Modern Algebra},
publisher= {Frederick Ungar Publishing Co., New York},
year= 1948
}
```

@book\{gage:99,
author= \{Gathen, J. ~von zur and J. ~Gerhard\},
title= \{Modern Computer Algebra\},
publisher= \{Cambridge University Press\},
year= 1999
\}

More algorithmic algebra

Let \mathcal{K} be a field of characteristic 0 .

AA-1: Let $P, Q \in \mathcal{K}[x]$ with $P \neq 0$ and $Q \neq 0$, and $G=\operatorname{gcd}(P, Q)$.
Then $\exists x(P(x)=0 \wedge Q(x)=0)$ iff $\exists x G(x)=0$.
AA-2: Let $Q \in \mathcal{K}[x]$ with $Q \neq 0$. Then $\exists x Q(x) \neq 0$.
AA-3: Let $P, Q \in \mathcal{K}[x]$ with $P \neq 0$ and $Q \neq 0$, and $\operatorname{gcd}(P, Q)=1$ (relatively prime).
Then $\exists x P(x)=0 \wedge Q(x) \neq 0$ iff $\exists x P(x)=0$.
AA-4: Let $P, Q \in \mathcal{K}[x]$ with $P \neq 0$ and $Q \neq 0, G=\operatorname{gcd}(P, Q)$, and $P_{1}(x)$ with $P(x)=G(x) \cdot P_{1}(x)$.
Then $\exists x(P(x)=0 \wedge Q(x) \neq 0)$ iff $\exists x\left(P_{1}(x)=0 \wedge G(x) \neq 0\right)$.
AA-5: Let $P(x), Q(x), G(x)$ and $P_{1}(x)$ are as in AA-4.
If $G(x) \neq 1(P, Q$ are not relatively prime $)$, then $\operatorname{deg}\left(P_{1}(x)\right)<\operatorname{deg}(P(x))$.

Constant polynomials and polynomials without roots

Let $P(x, \bar{y})=\sum_{i=0}^{n} t_{i}(\bar{y}) x^{i} \in \mathcal{K}[\bar{y}][x]$ be a univariate polynomial over $\mathcal{K}[\bar{y}]$. Here, the indeterminates \bar{y} are parameters.

- $P(x, \bar{y})$ is independent of x if there is $a \in \mathcal{K}[\bar{y}]$ such that for all x the equation $P(x, \bar{y})=a$ holds. In other words

$$
\operatorname{Const}(P, \bar{y}, a(\bar{y})):=\forall x P(x, \bar{y})=a(\bar{y})
$$

- $P(x, \bar{y})$ has no solution for x if there is no $a \in \mathcal{K}[\bar{y}]$ such that for all x the equation $P(x, \bar{y})=a(\bar{y})$ holds. In other words

$$
\operatorname{Nosol}(P, \bar{y}):=\forall x P(x, \bar{y}) \neq 0
$$

Constant polynomials and polynomials without roots (AA-0)

Here we use ACF_{0}.

- Const (P, \bar{y}, a) can be written quantifier-free:

$$
\operatorname{Const}(P, \bar{y}, a):=\left(t_{0}(\bar{y})=a \wedge \bigwedge_{i=1}^{n} t_{i}(\bar{y})=0\right)
$$

- $\operatorname{Nosol}(P, \bar{y})$ can be written quantifier-free:

$$
\operatorname{Nosol}(P, \bar{y}):=\left(t_{0}(\bar{y}) \neq 0 \wedge \bigwedge_{i=1}^{n} t_{i}(\bar{y})=0\right)
$$

- Const (P, \bar{y}, a) and $\operatorname{Nosol}(P, \bar{y})$ are equivalent to a conjunction of polynomial equations or inequalities.
- Their negations are equivalent to a disjunction of polynomial equations or inequalities.

QE-I: $\Phi(\bar{y})=\exists x\left(\bigwedge_{i=1}^{n} P_{i}(x, \bar{y})=0 \wedge \bigwedge_{j=1}^{m} Q_{j}(x, \bar{y}) \neq 0\right)$

We write it simpler by using
$P(x)=\operatorname{gcd}\left(P_{i}, i=1, \ldots, n\right)$ and $Q(x)=\prod_{j=1}^{m} Q_{j}(x)$.
$n=0, m>0$:
We use AA-0 and AA-2:
$\exists x Q(x) \neq 0$ is equivalent to $\neg \forall x Q(x)=0$,
or equivalently, to $\neg \operatorname{Const}(Q, \bar{y}, 0)$ with $Q(x)=\sum_{j=0}^{m} s_{j}(\bar{y}) x^{j}$. This can be written as

$$
\left(s_{0}(\bar{y}) \neq 0 \vee \bigvee_{j=1} s_{j}(\bar{y}) \neq 0\right)
$$

(with the remaining free variables \bar{y} free).
This is now a disjunction of inequalities.

QE-II: $\Phi(\bar{y})=\exists x\left(\bigwedge_{i=1}^{n} P_{i}(x, \bar{y})=0 \wedge \bigwedge_{j=1}^{m} Q_{j}(x, \bar{y}) \neq 0\right)$
$n>0, m=0:$
We use $A A-0, A A-1$ and $A C F_{0}$:
$\exists x P(x)=0$ is equivalent to $\neg \operatorname{Nosol}(P, \bar{y})$.
For $P(x)=\sum_{j=0}^{n} t_{i}(\bar{y}) x^{i}$ this can be written as

$$
\left(t_{0}(\bar{y})=0 \vee \bigvee_{i=1}^{n} t_{i}(\bar{y}) \neq 0\right)
$$

(with the remaining free variables \bar{y} free).
This is now again a disjunction of equations and inequalities.

$$
\text { QE-III: } \Phi(\bar{y})=\exists x\left(\bigwedge_{i=1}^{n} P_{i}(x, \bar{y})=0 \wedge \bigwedge_{j=1}^{m} Q_{j}(x, \bar{y}) \neq 0\right)
$$

$n>0, m>0:$
Let $G(x)=\operatorname{gcd}(P, Q)$ and $P_{1}(x)$ such that $P(x)=G(x) \cdot P_{1}(x)$.
We use AA-0, AA-4 and AA-5:
$\Phi(\bar{y})$ is equivalent to

$$
\begin{aligned}
& {[(\operatorname{Const}(P, x, 0) \wedge \neg \operatorname{Const}(Q, x, 0))} \\
& \quad(\operatorname{Const}(G, x, 1) \wedge \neg \operatorname{Noso}(P, x)) \vee \\
& \left.\quad \exists x\left(P_{1}(x, \bar{y})=0 \wedge G(x, \bar{y}) \neq 0\right)\right]
\end{aligned}
$$

For each of the disjuncts we know how to eliminate the quantifier, either by AA-0, AA-0, AA-1, AA-3 ACF ${ }_{0}$, or, noting that G and P_{1} have lower degrees, by AA-4, AA-5.

What do we need to prove AA-1 to AA-5?

Étienne Bézout (1730-1783)

Bézout's identity:

Let $P(x), Q(x) \in \mathcal{K}[x]$ with $G(x)=\operatorname{gcd}(P(x), Q(x))$. There exist $A(x), B(x) \in \mathcal{K}[x]$ such that

$$
A(x) \cdot P(x)+B(x) \cdot Q(x)=G(x) .
$$

The proof uses again the Euclidean Algorithm.

It works in any ring which is a principal ideal domain, i.e., a ring in which for $a \neq 0, b \neq 0$ also $a b \neq 0$, and every ideal is generated by a single element.

Eliminating inequalties

We can also first eliminate inequalities.

- We note that $Q_{j}(x, \bar{y}) \neq 0$ is equivalent to $\exists z_{j}\left(z_{j} \cdot Q_{j}(x, \bar{y})-1=0\right)$
- We apply this to $\Phi: \Phi(\bar{y})=\exists x\left(\bigwedge_{i=1}^{n} P_{i}(x, \bar{y})=0 \wedge \bigwedge_{j=1}^{m} Q_{j}(x, \bar{y}) \neq 0\right)$ and get $\exists x\left(\bigwedge_{i=1}^{n} P_{i}(x, \bar{y})=0 \wedge \bigwedge_{j=1}^{m} \exists z_{j}\left(z_{j} \cdot Q_{j}(x, \bar{y})-1=0\right)\right)$. which is equivalent to

$$
\exists \bar{z} \exists x\left(\bigwedge_{i=1}^{n} P_{i}(x, \bar{y})=0 \wedge \bigwedge_{j=1}^{m}\left(z_{j} \cdot Q_{j}(x, \bar{y})-1=0\right)\right)
$$

- However, this introduces new existential quantifiers!

Handling the multiplicative inverse ${ }^{-1}$

If we add the inverse function ${ }^{-1}$ we can also eliminate it.

- Axiom for ${ }^{-1}$:

$$
\forall x\left(x \neq 0 \rightarrow\left(x \cdot x^{-1}=x^{-1} \cdot x=1\right)\right)
$$

- To make it a function we postulate $0^{-1}=0$.
- Constant terms are now rational numbers.
- To eliminate ${ }^{-1}$ we observe:

Lemma:

Every atomic formula with rational coefficients is equivalent to an atomic formula with integer coefficients.

Fields with QE

AA-0 - AA-5 hold in all fields.
The crucial elimination is in the formula $\exists x P(x, \bar{y})=0$.

- In the field of the reals \mathbb{R} the formula $\exists x\left(x^{2}=y\right)$ is only true for $y \geq 0$.
- In the field of the rational \mathbb{Q} solvability of polynomial equations is very complicated.
- We have seen in the last lecture that for every field \mathcal{K} in the language of fields the theory $\operatorname{Th}(\mathcal{K})$ is undecidable

Characterizing fields \mathcal{K} with QE

A. MacIntyre (1971), A. MacIntyre, K. McKenna and L. van den Dries (1983)

Theorem:

Let \mathcal{K} be in the language of fields (without order)
such that $T h(\mathcal{K})$ admits QE .

Then \mathcal{K} is either finite or algebraically closed.

Complexity

We have two questions of complexity:

- Given ϕ, how long does a Turing machine have to work to produce a quantifier free equivalent of ϕ ?
- Given ϕ, how long is the shortest quantifier free equivalent of ϕ ?

