
Logic for Computer Science (234292)Prof. J.A. MakowskyDepartment of Computer ScienceTechnion|Israel Institute of Technology, Haifa, IsraelOctober 6, 1997AbstractDraft of a textbook on Logic in Computer Science.The book is based on the courses Logic 1, Logic 2 and De-�nability and Computability, as taught by the author dur-ing several years at the Computer Science Department atthe Technion|Israel Institute of Technology. Commentswelcome.
0

1This version is used for the course `Logic 1' (234292) given in thewinter semester 1997/8at the Computer Science Department of the Technion{Israel Institute ofTechnology. It was also used in 1990-1996 by the same lecturer. Previousversions are still useful.The lecturers areDr. Y. Kimchi (yechiel@CS.Technion.AC.IL)Prof. J. Makowsky (janos@cs.technion.ac.il)The coordinator for Tirgul isL. Ravve (cselena@cs.technion.ac.il)The lecture takes place onWednesday, 14:30-16:30Details of Tirgulim, Reception hours etc. will be posted at the home-page of the coursehttp://www.cs.technion.ac.il/ janos/COURSES/LOGIC/logic1.htmlThere are seven home assignments (H), a mid{term exam (M) anda �nal exam (F). The exams are with open books. The six best homeassignements count. The �nal grade is computed by the formulamaxfF; (F +M)=2; (F +M +H)=3; 2F +H=3g:

2Contents1 Introduction . 42 The World of Sets . 72.1 Sets and operations on sets 72.2 Relations and functions . 102.3 Inductive De�nitions and Proofs 122.4 Some more sets . 142.5 Implementing Datastructures as sets 172.5.1 Words . 172.5.2 Trees . 182.5.3 Natural numbers and its arithmetic operations . . . 192.6 Equipotence . 213 Propositional Logic . 273.1 The Syntax and Semantics of Propositional Logic 273.1.1 Syntax of Propositional Logic 273.1.2 The Truth Table Semantics of Propositional Logic . 303.2 Basic Semantic Concepts . 333.2.1 Validity, Logical Equivalence and Logical Consequence 333.2.2 Substitution . 373.2.3 Normal Forms . 383.3 Deduction Methods and Compactness 403.3.1 Proof Sequences . 403.3.2 Manipulations of Proof Seequences 423.3.3 Completeness and Compactness 433.3.4 Resolution . 453.4 Compactness . 493.4.1 A Semantic Proof of Compactness 493.4.2 Applications of Compactness: De�nability 503.4.3 Truth Table Extensions of Propositional Logic . . . 524 First Order Logic . 554.1 Vocabularies and Structures 564.1.1 Vocabularies . 564.1.2 Interpretations of Vocabularies 574.1.3 Isomorphisms and Substructures � 584.2 A Museum of Structures . 614.2.1 Structures for Arithmetic 614.2.2 Graphs and Orders 634.2.3 Words and Sets of Words as Structures 644.2.4 Data Structures of Computer Science 654.2.5 2{Structures . 664.3 Syntax and Semantics of First Order Logic 664.3.1 Syntax of First Order Logic 67

34.3.2 Semantics of First Order Logic 704.4 Basic Semantic Concepts . 724.4.1 Validity, Logical Equivalence and Logical Consequence 724.4.2 Normal Forms . 754.4.3 Models and Theories * 764.5 Visit to the Museum: The Meaning Function and De�nability 764.5.1 The Logical Lieu . 774.5.2 Ordered Fields . 774.5.3 The Natural Numbers 794.5.4 Graphs and Orders 804.5.5 Words and Sets of Words as Structures 804.5.6 Data Structures of Computer Science 814.5.7 2{Structures . 824.5.8 Substructures . 824.6 Hilbert{style Deduction for First Order Logic 834.6.1 Hilbert-style Axioms and Inference Rules 834.6.2 Manipulations of Proof Sequences 854.6.3 Completeness and Compactness 874.6.4 Proof of the Completeness Theorem 884.6.5 The Case with Equality 904.7 Visit to the Museum: Non{De�nability 904.7.1 Finite Structures . 904.7.2 The Real Numbers 914.7.3 The Natural Numbers 924.8 Uni�cation and Resolution 92

41 IntroductionThe purpose of this book is to analyze in a mathematical way the syntaxand semantics of formal languages for the speci�cation of data structures,for programming, and for reasoning about programs. For this purpose wemodel all the notions introduced in the world of sets and use the naturallanguage of set theoretic mathematics, also known as Naive Set Theory. Weintroduce set theoretic concepts whenever they are needed and concentrateon the themes of syntax and semantics. The �rst formal language discussedin detail is propositional logic. The treatment of propositional logic isdictated by what we need later, and is not a goal by itself. Methodologically,it serves as a paradigm for treating such a formal language by mathematical,i.e., set theoretic, means. Substantially it serves us well to introduce thebasic concepts and questions we want to ask about such formal languages.It also serves as a basis for further arguments. The main emphasis ofthe �rst part, the course Logic 1, is on �rst order logic, culminating inGoedel's Completeness Theorem and Ehrenfeucht's classi�cation of �rstorder de�nability. The second part, the course Logic 2, concentrates onthe limitations of �rst order logic, such as Incompleteness Theorems andthe theorems of Lindstrom, and on various extensions of propositional and�rst order logic such as Modal Logic, Dynamic Logic, and Temporal Logic.As the emphasis of the book is on the mathematical treatment of top-ics in syntax and semantics, a word is needed about how to read thisbook. Beginning computer science students very often lack performanceand pro�ciency in mathematical arguments. They often complain aboutthe scarcity of examples in the mathematical treatment of a subject, andconfuse the abundancy of examples with the soundness of an argument.Reading a mathematical text is an exploratory activity which involves alsopaper and pencil. When encountering a de�nition the reader should beable to explore the de�nition by providing examples and counterexamplesactively. Very often simple conclusion and explorations of the de�nitionsphrased as propositions are really encapsulated formulations of in�nitelymany examples. To stress this point, our text very often has examplesand propositions, lemmas, corollaries, marked as exercises. The intendedmeaning of this, and a conditio sine qua non for the understanding ofthe presented material, is that the student really performs these requiredexercises pro�ciently. Printing the solution to these exercises is not only awaste of paper, but invites the reader to cheat himself, by glancing throughthe solution rather than resorting to paper and pencil. Pro�ciency in math-ematical arguments is a means of emancipating oneself from beliefs, preju-dice, and superstition. As R. Godement has put it in his Cours d'Algebrein 1966:Even in teaching mathematics one can at least attempt to teach the stu-dents the avour of freedom and critical thought, and to get them used to

5the idea of being treated as humans empowered with the ability of under-standing.What I would like to add, as Godement took it for granted, but forgotto mention it, is that I also treat the reader as a human being who is willingto use this very ability, not only in the limited context of performing theexercises of this book, but in his whole attitude towards life. Science, asthe logician W.Quine put it, is selfconscious common sense. And so arelogic and all the activities which are related to programming machines toperform tasks previously reserved to humans.The following is a discussion of related textbooks. The �rst �ve are clas-sics of mathematical logic (written for the mathematicallyminded) withoutan outlook to computer science. The last three are texts for beginning com-puter scientists.(i) E.Mendelson, Introduction to mathematical logic, Van Nostrand,1964.This is an excellent, though oldfashioned, book on mathematical logic,suitable as a �rst course for mathematics students.(ii) R.C. Lyndon, Notes on logic, Van Nostrand, 1964.Very elegant and concise classic text. Written for mathematicianswith some algebraic background. Our notion of proof sequence is takenfrom here.(iii) H. B. Enderton, A mathematical introduction to logic, AcademicPress, 1972.A very elegant treatment of the basic subjects of elementary logic.Very precise and still intuitive in its motivation of the basic concepts.(iv) E.D. Ebbinghaus, J.Flum and W. Thomas, Mathematical Logic,Springer, 1984.The state of the art introductory text on �rst order logic, written formathematicians. Covers all relevant basic developments in �rst orderlogic as seen today.(v) J. Malitz, Introduction to mathematical logic, Springer, 1979.A very elegant and modern treatment of the basic subjects of logic:Naive Set Theory, Computability and First Order Logic. Written asan introduction for mathematicians. In spirit very similar to ourapproach.(vi) P. Halmos, Naive set theory, Van Nostrand, 1960.This is the classic introductory course in Naive Set Theory. Recom-mended as background reading.(vii) Z. Manna, Mathematical theory of computation, McGraw-Hill, 1974.This was one of the �rst books on logic in computer science. The

6 presentation is less rigorous than our treatment. Recommended as abackground reading.(viii) M. Wand, Induction, Recursion and Programming, North Holland,1980.Here the intended audience are students of computer science. Theapproach is similar to our treatment, but the material presented ischosen with an emphasis on programming languages.(ix) H.R. Lewis and C.H. Papadimitriou, Elements of the theory of com-putation, Prentice Hall, 1981.This book combines material of three courses: Discrete Mathemat-ics, Automata Theory and Computability and Logic 1 for ComputerScientists. The last two chapters basically cover the material of ourcourse.More references will be given at later stages.AcknowledgmentsI would like to thank my previous assistants Y. Bargury, E. Dichterman, R.A. Hason, E. Ravve (Mouratova) and A. Sharell for their critical readingand valuable suggestions during the preparation of this text. I would like tothank A. Ben{Ephraim, B. Farison, L. Finkelshtein, G. Granot, Y. Pnueliand E. Roytman whose notes of my course Logic 2 I could use as a basisfor some sections.I am also indebted to my colleagues S. Ben{David, N. Francez and A.Litman for their interest and advice.

72 The World of SetsIn this chapter we introduce the (natural, mathematical) language of sets.We expect the reader to be familiar with sets and functions as taught in acourse on Discrete Mathematics, Calculus, Number Systems or alike. Wealso assume the reader is vaguely familiar with data structures such asgraphs and trees. One purpose of this chapter is to �x notation. But,more importantly, the main purpose of this chapter is to get the reader ac-quainted with the handling of mathematical objects which are well{de�nedas sets of some kind. We are not dealing here with set theory. We hopethe reader will learn the language of sets na��vely on the way, as one maylearn a language just by living among speakers of that language und usingit. The correct use of the language of sets is sometimes called (mislead-ingly) Na��ve Set Theory. There is no theory here in the sense that we willnot reect upon the foundation of the language of sets. We shall use itcritically, as a style of reasoning. We shall express our mathematical rea-soning in it and we shall model our objects under study in it, be it formallanguages, computing devices or any other object we wish to study math-ematically. We shall learn the language of sets by using it. The heading`Proposition{Exercise' is given to a statement (or collection of statements)which we want to exhibit, but which the reader should prove for himself,before proceeding further.2.1 Sets and operations on setsWe �rst introduce some sets by well known examples. Let N be the set ofnatural numbers including 0, N+ be the set of natural numbers without0, Q the set of rational numbers, R the set of real numbers, C the set ofcomplex numbers. All these sets are in�nite. ; denotes the empty set. Theempty set is �nite.We write a 2 A for the statement `a is an element of A'. This statementis only meaningful provided A is a set. We write A � B if A;B are setsand for every a 2 A it is true that a 2 B. A is called a subset of B. If A;Bare sets, we write A = B if A � B and B � A and we say that A equalsB. If A is a set (or a well de�ned object), then fAg denotes the set whoseonly element is A.Let a; b; c be letters of the alphabet. We denote by fa; b; cg the sethaving exactly a; b; c as its elements. We consider letters as atoms (urele-ments), i.e. entities which are not sets, but which can be elements of sets.We shall treat all ASCI-symbols, letters of the greek alphabet, and possiblyother symbols as such atoms. In particular, if X is a symbol, by abuse ofnotation, we may denote by fXi : i 2Ng an in�nite set of atoms Xi.Let A be a �nite set of atoms. We denote by (A)� the set of �nitewords (strings) over A. We identify A with the set of one letter words over

8A and therefore have that A � (A)�. We denote by � the empty word.If a; b 2 (A)� are two words, we denote by a � b the word obtained fromwriting b after a. If the context is clear we also write ab instead of a � b.We allow explicit description of sets. If a; b; c are atoms and A;B aresets, then fa;A; b; Bg denotes the set having exactly a; b; A;B as its ele-ments. fa;B; fc; Bgg is a set with three elements, namely a;B and the setfc; Bg. More generally, if A is a set and � is a statement about elementsx of A, then fx 2 A : �(x)g denotes the subset of A whose elements areexactly those elements of A for which the statement � is true.If A;B are sets we denote by A \B the set whose elements are exactlythose a such that a 2 A and a 2 B. A \ B is called the intersection of Aand B. If A;B are sets we denote by A [B the set whose elements areexactly those a such that a 2 A or a 2 B. A [B is called the union of Aand B.2.1.1: Proposition{ExerciseVerify the following statements:(i) ; � A for every set A;(ii) A � A (Reexivity of inclusion);(iii) If A � B and B � C then A � C (Transitivity of inclusion);(iv) A � B implies that A [B = B;(v) A � B implies that A \B = A;(vi) A \B = B \A (Commutativity of intersection);(vii) A [B = B [A (Commutativity of union);(viii) A [(B [C) = (A [B) [C (Associativity of union);(ix) A \ (B \ C) = (A \B) \ C (Associativity of intersection);(x) A \ (B [C) = (A \B) [(A \ C) (Distributivity of intersection);(xi) A [(B \ C) = (A [B) \ (A [C) (Distributivity of union).Let X be a non-empty set of sets.We denote by SX the set which consists of all the elements of elements ofX, i.e. y 2 SX i� there is a Y 2 X such that y 2 Y . SX is called theunion over X. If X = fA;Bg and A;B are sets, then SX = A [B.We denote by TX the set which consists of all the elements which areelements of every element of X, i.e. y 2 TX i� for every Y 2 X it is truethat y 2 Y . TX is called the intersection over X. If X = fA;Bg andA;B are sets, then TX = A \B. For X = ; we put SX = ;, but TX isunde�ned.

92.1.2: Proposition{ExerciseLet A;B;C be sets and X;Y be non{empty sets of sets. Verify the followingstatements:(i) ([X) \ ([Y) = [f(A \B) �[X : A 2 X and B 2 Y g= [f(A \B) �[Y : A 2 X and B 2 Y g:(ii) (\X) [(\Y) = \f(A [B) �[X : A 2 X and B 2 Y g= \f(A [B) �[Y : A 2 X and B 2 Y g:Let A;B be sets. We denote by A n B the set consisting of all theelements of A which are not elements of B. A n B is called the di�erenceof B from A or the complement of B in A.2.1.3: Proposition{Exercise (de Morgan's laws). Let A;B;C be sets and X be a non{empty set of sets. Verify the followingstatements:(i) A � B implies that B n (B nA) = A.(ii) A � B and B � C implies that C nB � C nA(iii) C n (A [B) = (C nA) \ (C nB).(iv) C n (A \B) = (C nA) [(C nB).(v) C n (SX) = TfC nA � C : A 2 Xg.(vi) C n (TX) = SfC nA � C : A 2 Xg.Let A be a set. We de�ne }(A) to be the set whose elements are exactlyall the subsets of A. }(A) is called the power set of A. Clearly ; 2 }(A)and A 2 }(A).2.1.4: Proposition{ExerciseLet A;B be sets and X be a non{empty set of sets. Verify the followingstatements:(i) A � B implies that }(A) � }(B).(ii) }(A) [}(B) � }(A [B).

10(iii) }(A \B) � }(A) \ }(B).(iv) Sf}(A) 2 }(}(A)) : A 2 Xg � }(SX).(v) }(TX) � Tf}(A) 2 }(}(A)) : A 2 Xg.2.2 Relations and functionsThe aim of this section is to supply de�nitions of `relation', `function' andrelated notions in enough generality to be of service throughout the book.These notions ultimately rest on that of the ordered pair ha; bi. Although`ordered pair' can be de�ned in terms of the membership relation, as canall the notions of classical mathematics, we will not do this here. For thetime being we shall take the ordered pair ha; bi to be a basic (unde�ned)notion with the property that ha; bi = hc; di if and only if a = c and b = d.ha; bi itself is not a set and is treated like an atom, a; b may be sets, atomsor ordered pairs. By abuse of notation we shall write ha1; a2; a3; : : : ; anifor h: : : ha1; a2i; a3i; : : : ; ani. ha1; a2; a3; : : : ; ani is called an n-tuple.The Cartesian product of two sets A and B, written A � B, is the setconsisting of all ordered pairs ha; bi with a 2 A and b 2 B. By abuse ofnotation we write A1�A2�A3�: : :�An for (: : : (A1�A2)�A3)�: : :�An).We write An for (: : : (A � A) � A)� : : : : : :�| {z }n�3 A). We put further A1 = Aand A0 = f;g. The informal de�nition of An can be replaced later by aninductive de�nition.2.2.1: Proposition{Exercise(i) (A [B) � C = (A� C) [(B �C);(ii) (A \B) � (C \D) = (A �C) \ (B �D);(iii) (A nB) � C = (A � C) n (B � C);(iv) A �B = ; if and only if either A = ; or B = ;;(v) If A � B then A� C � B � C.2.2.2: ExerciseProve or disprove the following statements:(i) (A [B) � (C [D) = (A� C) [(B �D);(ii) If B [C � A then (A� A) n (B � C) = (A nB) � (A nC).

11A binary relation is a set of ordered pairs. A binary relation on a setA is a set of ordered pairs ha1; a2i with a1; a2 2 A. In other words, abinary relation on A is a subset of A�A. The domain of a binary relationR � A�B, which is denoted by Dom(R), is the set fa 2 A : there is a b 2B such that ha; bi 2 Rg. The range of a binary relation R � A�B, whichis denoted by Ran(R), is the set fb 2 B : there is a a 2 A such that ha; bi 2Rg. The �eld of R is the set Ran(R) [Dom(R). For a binary relation Rwe denote by R�1 the set of ordered pairs hy; xi such that hx; yi 2 R.An n-ary relation is a set of n-tuples. An n-ary relation on a set A isa subset of An.2.2.3: Example(i) The set of hx; yi 2 N2 such that x � y is a binary relation. Thisrelation is called the `natural' order on N.(ii) The set of hx; y; zi 2 R3 such that x2 + y2 = z2 is a ternary relation.This relation is called the geometrical lieu of all the points in R3satisfying the equation x2 + y2 = z2.A function f is a binary relation, such that for every x there is at mostone y for which hx; yi 2 f . A function f from a set A to a set B, for whichwe also write f : A ! B, is a function with domain A and Ran(f) � B.When f is a function we write f(x) = y instead of hx; yi 2 f . A functionf : A ! B is one to one if f�1 is a function. A function f : A ! B isonto if Ran(f) = B. The set of all functions f : A! B is denoted by BA.If f : An ! B is a function from An to B, we say also that f is an n-aryfunction from A to B.2.2.4: Proposition{Exercise(i) Y ; has exactly one element, namely ;, regardless whether Y is emptyor not;(ii) For every set X we have X; = f;g.If f : A ! B and g : B ! C are two functions we denote by g � f thefunction g � f : A ! C de�ned by g � f(x) = g(f(x)). g � f is called thecomposition of g and f .2.2.5: Proposition{ExerciseLet f : A! B and g : B ! C be functions.(i) If f and g are one to one so is g � f ;(ii) If f and g are onto so is g � f .

122.2.6: De�nition (Restriction of a function)Let f : A ! B be a function and C � A. We denote by fjC the uniquefunction g : C ! B such that for every a 2 C we have f(a) = g(a).This section will be expanded further according to what we might needlater.2.3 Inductive De�nitions and ProofsOne of the most frequently used tools to construct sets and prove state-ments about them in this book is the principle of mathematical induction.As we need it in a more general setting than the reader may be used to we�rst de�ne a few auxiliary concepts.2.3.1: De�nitionLet A be a set, B � A be a subset of A and F = SfFn : n 2 Ng be a setof functions such that for each f 2 Fn f : An ! A is an n-ary function onA. We call n the arity of f 2 Fn. A set X � A is F -closed over B if(i) B � X and(ii) for every n 2 N, every f 2 Fn and every ha1; a2; : : : ; ani 2 Xn alsof(a1; a2; : : : ; an) 2 X.2.3.2: Proposition{ExerciseLet A;F be as above. Prove the following statements:(i) A is F -closed over every B � A.(ii) Let X;Y � A be F -closed over some B � A. Then X \Y is F -closedover B.(iii) Let X be a set of sets X � A which are all F -closed over some B � A.Then TX is F -closed over B.2.3.3: Proposition{ExerciseLet A;B; F be as above. Let XB;F be the intersection of all subsets of Awhich are F -closed over B. Prove the following statements:(i) XB;F is F -closed over B.(ii) If X � A is F -closed over B then XB;F � X. In other words, XB;Fis the smalllest subset of A which is F -closed over B.2.3.4: De�nition (Inductively de�ned set). We say that a subset Y of A is inductively de�ned with basis B andclosure condition F if Y = XB;F . Y is called the closure of B under F .

132.3.5: RemarkPropositions 2.3.2 and 2.3.3 establish that De�nition 2.3.4 is `well-de�ned'.2.3.6: Example (The set of polynomials in one free variable:)Let A be the set (A0)�, the set of �nite words over A0 = f0; 1; x; �;+; (;)g.We de�ne the set P (of polynomials in one free variable) inductively withbasis B and closure condition F .Basis: B = f0; 1; xg, in other words, 0; 1; x are in P .Closure (condition): Let f1 : A2 ! A be the function consisting of all thepairs hhw1; w2i; (w1 +w2)i and Let f2 : A2 ! A be the function consistingof all the pairs hhw1; w2i; w1 �w2i. Now let F = ff1; f2g.In other words, if w1; w2 2 P so are (w1 +w2) and w1 �w2.2.3.7: Convention (Proof by induction:)Let Y � A be inductively de�ned with basis B and closure condition F . Wewould like to prove that some statement � is true for all elements of Y . Todo this, let X� be the set of all elements of Y for which � is true. We callthe proof that X� is F -closed over B an inductive proof for `� is true forall elements of Y '.2.3.8: RemarkThe use of the phrase `inductive proof' is justi�ed by the following obser-vations: By Proposition 2.3.3 it su�ces to show that X� is F -closed overB, because then Y � X� and X� � Y by assumption, therefore Y = X�.Clearly then � is true for all elements of Y .Now, a `proof by induction' consists of the following scenario: First weshow that � is true for every element of B. We usually call this part of thescenario Basis. Then we have to show that for every f 2 Fn � F and everya1; a2; : : : ; an which satisfy � (i.e which are in X�) also f(a1; a2; : : : ; an)satis�es �. This part of the scenario we usually call Closure.2.3.9: ExampleLet � be the statement `all words (polynomials) of P have an even numberof parentheses'.Basis: As zero is even, B � X�.Closure: f1 adds no parentheses and f2 always adds two parentheses to aword, therefore X� is F -closed.2.3.10: De�nition (Inductively de�ned function)Let g : A ! B be a function. We say that F is inductively de�ned, if theset g � A� B is inductively de�ned as a set and g is a function. In otherwords, g is the smallest set XB;F closed under F over B for some set offunctions F and B � A �B, and for every a 2 A there is a unique b 2 Bwith ha; bi 2 XB;F .

142.3.11: ExampleWe give here an inductive de�nition for the factorial fact :N! N.Basis: h0; 1i 2 fact and h1; 1i 2 fact;Closure: If hn; ki 2 fact then hn + 1; kni 2 fact.As usual we write fact(n) = k for hn; ki 2 fact.2.3.12: Proposition{Exercise(i) If X is �nite (or possibly empty) with n elements, then f0; 1gX has2n elements.(ii) Let fact : N ! N as de�ned above. Show that for every n 2 N wehave that 2n � 1 � fact(n)2.4 Some more setsWhen we build our mathematical objects, we have at our disposal at thebeginning very few sets. We may have some atoms (or a set of atoms), andwe have the empty set. We list here a few set building principles, whichwill be the basis of any later construction. The �rst three have been usedimplicitly before.2.4.1: Principle (Two element sets)For every two sets A;B there is a set, denoted by fA;Bg, whose onlyelements are exactly A and B.2.4.2: Principle (Union of two sets)For every two sets A;B there is a set, denoted by A[B, whose only elementsare exactly the elements of A and of B.We have used the ordered pair as a basic construction. We now will givea de�nition of the ordered pair as a set. This de�nition was proposed byK. Kuratowski. Their are other de�nition possible, but this is the mostlyused.2.4.3: De�nition (Ordered pair)We denote by hA;Bi the set ffAg; fA;Bgg.2.4.4: Proposition{ExerciseLet A;B;C;D be four sets (or atoms).(i) If A 6= B then hA;Bi 6= hB;Ai .(ii) hA;Bi = hC;Di i� A = C and B = D.2.4.5: ExerciseWhich of the following alternative de�nitions satisfy F (A;B) = F (C;D)i� A = B and C = D ?

15(i) F (A;B) = fA; fA;Bgg;(ii) F (A;B) = fA; fBgg;(iii) F (A;B) = fffAgg; fA;Bgg;(iv) F (A;B) = fffAgg; ffA;Bggg.2.4.6: Principle (Union of set of sets)For every two sets A there is a set, denoted by SA, whose only elementsare exactly the elements of every element of A.2.4.7: Principle (Power set)For every set A there is a set, denoted by }(A), such that X 2 }(A) i�X � A.2.4.8: Principle (Speci�cation of subsets)Let � be a property and A be a set. Then there is a set, which containsexactly those elements of A which satisfy �. We denote this set by fx 2A : x satisfies �g.The principles described so far are very intuitiv. We build our setsfrom previously built sets by describing the construction. The sets wecan build up to now are all, what we describe intuitively as `�nite'. Thenext few principles allow us to construct some `in�nite' sets. The Germanmathematician J.Dedekind (1831-1916) and the Italian mathematician G.Peano (1858-1932) gave the �rst de�nition of the Natural Numbers as aset. It says that the Natural Numbers are the smallest set closed under a`successor function'. The particular de�nition of such a `successor function'we shall use here is due to J. von Neumann (1903-1957)2.4.9: Principle (Closure under successor)For every set A there is a set B such that A � B and whenever x 2 B thenalso (x [fxg) 2 B.2.4.10: Proposition{ExerciseFor every set A there is a (unique) smallest set SU (A) such that A �SU (A) and whenever x 2 SU (A) then also (x [fxg) 2 SU (A).2.4.11: De�nition (Set of Natural Numbers)We denote the set SU (f;g) by N. and the set SU (f;g) n f;g by N+.2.4.12: De�nition (Successor function of N)We de�ne a relation succ :N!N as follows by succ = fha; bi 2N2 : b =a [fagg.2.4.13: Proposition{Exercisesucc is a function which is one{one and onto.

162.4.14: Principle (Closure under ordered pairs)For every set A there is a set B such that A � B and whenever x; y 2 Bthen also hx; yi 2 B.2.4.15: Proposition{ExerciseFor every set A there is a (unique) smallest set CART (A) such that A �CART (A) and whenever x; y 2 CART (A) then also hx; yi 2 CART (A).2.4.16: Proposition{ExerciseFor every A we have:(i) A� A � CART (A);(ii) (A� A)� A � CART (A) and A� (A� A) � CART (A);(iii) if X;Y � CART (A) then X � Y � CART (A).We now can give a proper de�nition if the n{fold cartesian product ofa set A:2.4.17: De�nition (n{fold Cartesian product)Let A be a set. We de�ne inductively a function cartA : N ! CART (A)as follows:Basis: cartA(0) = f;g and cartA(1) = A.Closure: cartA(n+ 1) = cartA(n) �A.The following is a generalization of the previous constructions.2.4.18: PrincipleFor every set A there is a set B such that A � B and whenever x; y 2 Bthen also (x [fyg) 2 B.2.4.19: Proposition{ExerciseFor every set A there is a (unique) smallest set HF (A) such that A �HF (A) and whenever x; y 2 HF (A) then also (x [fyg) 2 HF (A).2.4.20: De�nition (Hereditary �nite sets)We denote the set HF (f;g) by HF.HF looks like a `small world of sets'. In some precise sense all the�nite objects which can be built from the empty set alone are in HF. Thefollowing proposition makes this more precise.2.4.21: Proposition{ExerciseThe set HF has the following properties:(i) (Transitivity of 2)If x 2HF and y 2 x so y 2HF;

17(ii) (Closure under subsets)If x 2HF and y � x so y 2HF;(iii) (Closure under union and intersection)If x; y 2HF so are x [y 2 HF and x \ y 2HF;(iv) (Closure under ordered and unordered pairs)If x; y 2HF so are fx; yg 2HF and hx; yi 2HF;(v) (Closure under power sets)If x 2HF so }(x) 2HF.2.4.22: Proposition{ExerciseFor every set A we have that SU (A) � HF (A) and CART (A) � HF (A).2.5 Implementing Datastructures as setsIn this section we shall introduce various objects we shall study, such aswords, trees, natural numbers and give their de�nitions as sets. The con-tents of this section are not essential for understanding the script.2.5.1 WordsGiven the natural number N denote by In the set In = f0; 1; : : : ; n� 1g.I0 = ;. Denote by A(n) the set AIn , i.e. the set of functions w : In ! A.For w 2 A(n)Now we put2.5.1: De�nition (Words)Let A be a set (an alphabet).(i) A� = Sn2NA(n) is the set of �nite words over A;(ii) A+ = Sn2N+ A(n) is the set of �nite non{empty words over A.(iii) We denote by `(w) the unique n 2 N such that w 2 A(n). `(w) iscalled the length of w, and ` is a function from A� to N.(iv) w(k) 2 A denotes the k{th letter of the word w, if k < n, otherwiseit is not de�ned.(v) The empty word � is the only element of A;.(vi) Let k < n, v 2 A(k) and w 2 A(n). v is an initial segment of w if forevery j � k we have v(j) = w(j).

182.5.2: De�nition (Concatenation of words)Let A be a set. We de�ne a binary function � : A�2 ! A� inductively asfollows:(i) For v 2 A(n) and a 2 A we put v�a 2 A(n+1) de�ned as v�a(k) = v(k)for k < n and v � a(n) = a.(ii) We note that for every non{empty word w 2 A� there is a uniquea 2 A and a unique v 2 A� such that w = v � a.(iii) Assume that � : A� � A(n) ! A� has been de�ned, and let u 2 A�and w 2 A(n+1). As w = v � a, we put u �w = (u � v) � a.2.5.3: Proposition{ExerciseProve by induction:(i) � : A� � A� ! A� is associative, i.e. for every u; v; w 2 A� we have(u � v) �w) = u � (v �w).(ii) � is a neutral element for �, i.e. for every w 2 A� we have � � w =w = w � �.(iii) For every v; w 2 A� we have `(v � w) = `(v) + `(w) and if v is aninitial segment of w then `(v) � `(w).(iv) If A has k elements, then A(n) has kn elements.2.5.2 TreesTrees are often described as undirected circuit{free graphs. We shall de-scribe here how to build directed trees as sets.We �rst give an inductive de�nition of �nite trees as a subset ofCART (A).2.5.4: De�nition (Tree over A)Let A be a set. The set TREE(A) � CART (A) and a function d :TREE(A)!N, the depth of a tree, are inductively de�ned as follows:Basis: Every a 2 A is in TREE(A). d(a) = 0.Closure: If T1; : : : ; Tn 2 TREE(A) and d(Ti) = di for i � n thenT = hT1; : : : ; Tni 2 TREE(A) and d(T) = maxfd1; : : : ; dng+ 1.hT1; : : : ; Tni is called the father of T1; : : : ; Tn. For i � n Ti is the i-th sonof hT1; : : : ; Tni.2.5.5: De�nition (Subtrees)Let T1 and T2 be in TREE(A). T1 is a subtree of T2 is de�ned inductively:Basis: T2 is a subtree of itself.

19Closure: If T1 is a subtree of T2 and T0 is a son of T1 then T0 is a subtreeof T2.The subtrees T of T2 with d(T) = 0 are called leaves of T2.We next de�ne labeled trees in a similar way:2.5.6: De�nition (Tree over A with node labels from B)Let A and B be sets. The set TREEB(A) � CART (A [B) and a func-tion d : TREEB(A) ! N, the depth of a tree, are inductively de�ned asfollows:Basis: Every a 2 A is in TREEB(A) with root a. d(a) = 0.Closure: If T1; : : : ; Tn 2 TREEB(A), b 2 B and d(Ti) = di fori � n then T = hbhT1; : : : ; Tnii 2 TREE(A) and has root b. d(T) =maxfd1; : : : ; dng+ 1.b is called the father of T1; : : : ; Tn. For i � n Ti is the i-th son of b.2.5.7: De�nition (Subtrees of labeled trees)Let T1 and T2 be in TREEB(A). T1 is a subtree of T2 is de�ned inductively:Basis: T2 is a subtree of itself.Closure: If T1 is a subtree of T2 and T0 is a son of T1 then T0 is a subtreeof T2.The subtrees T of T2 with d(T) = 0 are called leaves of T2.Trees and labeled trees can be drawn as two{dimensional pictures. Thedrawing can be de�ned inductively: For a leave just write down the lettera 2 A.If T = hT1; : : : ; Tni and you know how to draw the Ti's, draw T by drawingthe Ti's in their order, draw a point above them and link this point withthe trees below.If T = hb; hT1; : : : ; Tni; i and you know how to draw the Ti's, draw T bydrawing the Ti's in their order, draw the letter b above them and link thispoint with the trees below.2.5.8: ExerciseDraw some sample trees.2.5.3 Natural numbers and its arithmetic operationsIn this subsection we de�ne the arithmetic operations on the Natural Num-bers N. Recall that succ(x) = x [fxg.Our �rst task is to de�ne the linear order on N.2.5.9: De�nitionWe de�ne a binary relation `less or equal' on N, which we write by in�xnotation: for a; b 2N we write a � b i� a 2 b or a = b.We have to verify that our de�nition satis�es our intuition, i.e. that �

20behaves as we expect.2.5.10: Proposition{Exercise (Linear order on N)Show by induction that with the above de�nition, � is a discrete linearorder on N with a �rst element, i.e.(i) (Reexivity) For every a 2N we have a � a.(ii) (Transitivity) For every a; b; c 2 N, if a � b and b � c then a � c.(iii) (Linearity) For every a; b 2N we have a � b or b � a.(iv) (Antisymmetry) For every a; b 2N we have a = b i� a � b and b � a.(v) (Discreteness) For every a 2N we have(v.a) a � succ(a),(v.b) a 6= succ(a) and(v.c) For every b 2 N with a � b � succ(a) we have that a = b orb = succ(a).(vi) (First element) For every a 2N we have that ; � a.(vii) (No last element) For every a 2 N there is a b 2 N such that b 6= aand a � b.2.5.11: ConventionWe write 0 for ;, the �rst element of N, 1 for succ(0), 2 for succ(1), etc.Our next task is to de�ne the arithmetic operations addition and mul-tiplication.2.5.12: De�nition (Addition)Next we de�ne inductively a binary function `addition', which we againwrite in in�x notation.Basis: For a 2 N we put a+0 =a and a+1= succ(a).Closure: For a; b 2N we put a+ succ(b) = succ(a + b).2.5.13: Proposition{Exercise (Properties of addition)Show by induction that for every a; b; c 2N we have(i) (Commutativity) a+ b = b+ a.(ii) (Associativity) (a+ b) + c = a+ (b+ c)(iii) (Neutral element) a+ 0 = 0 + a = a.(iv) (Monotonicity) If a � b then a+ c � b+ c.

212.5.14: De�nition (Multiplication)Next we de�ne inductively a binary function `multiplication', which weagain write in in�x notation.Basis: For a 2N we put a � 0 = 0 and a � 1 = a.Closure: For a; b 2N we put a � succ(b) = (a � b) + a.2.5.15: Proposition{Exercise (Properties of multiplication)Show by induction that for every a; b; c 2N we have(i) a � 0 = 0.(ii) (Commutativity) a � b = b � a.(iii) (Associativity) (a � b) � c = a � (b � c)(iv) (Distributivity) (a + b) � c = (a � c) + (b � c)(v) (Neutral element) a � 1 = 1 � a = a.(vi) (Monotonicity) If a � b then a � c � b � c.2.6 EquipotenceIn this section we introduce the notion of `two sets having the an equalnumber of elements'.2.6.1: De�nition (Equipotenct sets)Let A and B be sets. We say that a set A is equipotent to set B if thereis a one{one function on A onto B. If A and B are equipotent we writeA � B.This de�nition corresponds to our intuition when dealing with `small'sets. Exploring this de�nition will show that our intuition does not nec-essarily go beyond the every day expirience. For example, a set A mayproperly contain a set B and still be equipotent to B. Of course this cannot happen if A is `�nite'.2.6.2: ExampleLet B = fn2 : n 2 Ng. Then N � B. De�ne f : B ! N, f(x) = x2.Clearly f is one{one and onto B, so N and B are equipotent.2.6.3: ExampleThe open unit interval (0; 1) = fx 2 R j 0 < x < 1g is equipotent tothe set R of all real numbers. To see this, let f(x) = tan �(2x�1)2 . Thenf : (0; 1)! R is one{one and onto, so (0; 1) � R.We next show that equipotence between sets is an equivalence relation.2.6.4: TheoremFor all sets A;B; and C :

22(i) A � A.(ii) If A � B, then B � A.(iii) If A � B,and B � C, then A � C.Proof. (i) De�ne f : A! A by f(a) = a for all a 2 A. Then f : A! Ais one{one and onto, so A � A.(ii) Suppose A � B. Then there is a function f : A ! B, one{one andonto. Clearly f�1 : B ! A is one{one and onto, so B � A.(iii) Suppose f : A! B, and g : B ! C are one{one and onto functions.Then from Proposition{Exercise 1.2.5, the composition g � f is one{one and onto.So far, equipotence allows us to compare sets. Comparisons to partic-ular sets, of which we have some intuition, is useful. Using N for suchcomparisons allows us to de�ne, what we called till now `�nite' and `in�-nite'.2.6.5: De�nition (Finite, in�nite, countable and uncountable)Let A be a set.(i) A is countable if A � B for some B � N.(ii) If for some n 2N, A � f0; 1; : : :; n� 1g then A is �nite.(iii) A is in�nite, if there is a function f :N ! A which is one{one (butnot necessarily onto).(iv) A is uncountable if it is in�nite, but not countable.2.6.6: Examples(i) R and HF are in�nite.(ii) If A 6= ; then CART (A) is in�nite.(iii) Let E = fn 2N : n is eveng. E is countable and in�nite.2.6.7: Proposition{Exercise(i) No set is both �nite and in�nite.(ii) Let A and B be �nite sets, then A [B is �nite.

23(iii) The union of a �nite number of �nite sets is �nite.(iv) Let A and B be �nite sets, then A �B is �nite.(v) The cartesian product of a �nite number of �nite sets is �nite.2.6.8: Proposition(i) Let A and B be countable sets, then A [B is countable.(ii) Let A and B be countable sets, then A� B is countable.(iii) The cartesian product of a �nite number of countable sets is countable.(iv) If A is a countable set, so is CART (A).(v) The union of a countable number of countable sets is countable.Sketch of proof:. (i) As A and B are countable, map A into the evennumbers and B into the odd numbers.(ii) and (iii) follow from (iv).(iv) De�ne f : CART (A)!N inductively. Map A into the even numbersby a function f0. Extend f as follows: For a; b 2 CART (A) and f alreadyde�ned, put f(ha; bi) = 2f(a) � 3f(b). It is easy to see, from the propertiesof the ordered pair, that f so de�ned is one{one.(v) Let A = fAi : n 2 N be a family of countable sets and let fi : Ai !Nbe one{one. We shall map Si2N Ai into N �N by the function g de�nedas follows: For a 2 Ai we put g(a) = (i; fi(a)). It is easy to see that g isone{one.2.6.9: PropositionHF is countable.Proof:. We shall write HF as a countable union of �nite sets. Then thetheorem follows from proposition 2.6.8.We de�ne inductively HF = SfHn : n 2Ng withH0 = f;g;Hn+1 = Hn [fa [fbg 2 HF : a; b 2 Hng. Now prove by induction, thateach Hn is �nite.We have not given an example of an uncountable set. To exhibit suchsets we �rst prove atheorem:2.6.10: TheoremLet A be an arbitrary set, and f any function f : A ! }(A). Then f isnot onto }(A).

24Proof. We need to show that there is a B 2 }(A) such that B 62 Ran(f).Let B = fx : x 2 A and x 62 f(x)g. Then B � A and so, B 2 }(A).Suppose B 2 Ran(f), then B = f(a) for some a 2 A. We ask whether ornot a 2 B ?If a 2 B then by de�nition of B a 62 f(a). But B = f(a) so a 62 B, acontradiction.If a 62 B then a 2 f(a) so, again by the de�nition of B we concludethat a 2 B, contradiction.Both assumptions a 2 B and a 62 B lead to contradictions, our assump-tion that B 2 Ran(f) is erroneous, so B 62 Ran(f).2.6.11: Proposition{ExerciseLet A be an arbitrary set. Then A 6� }(A).To compare sets which are not equipotent, we introduce the followingde�nition:2.6.12: De�nitionWe say that B is at least as numerous as A if A is equipotent with a subsetof B, and we write A � B.If B is at least as numerous as A but not equipotent to A, we say that Bis more numerous than A and we write A � B.2.6.13: Proposition{ExerciseFor any three sets A;B;C we have:(i) A � A;(ii) if A � B and B � C then A � C.Now we are ready to show that uncountable sets in fact do exist.2.6.14: Theorem (Cantor)Let A be an arbitrary set, then A � }(A).Proof. Let function f : A! }(A) de�ned by f(a) = fag for all a 2 A. fis one to one function from A into }(A). Thus A � }(A). By the previousproposition, A is not equipotent with }(A). Hence A is less numerous then}(A).Proposition 2.6.13 states that � is reexiv and transitiv. If we �nd thatfor two sets A;B we have A � B and B � A we would suspect that A � B.Indeed, we have2.6.15: Theorem (Cantor-Bernstein)If A � B and B � A, then A � B.

25Proof. Let f : A ! B and g : B ! A be one{one functions. De�neCn; Dn inductively as follows:C0 = A� Ran(g); D0 = f(C0) and,Cn+1 = g(D0); Dn = f(Cn)The function showing that A � B is the function h : A ! B de�nedby: h(x) = � f(x) if x 2 Cn for some n,g�1(x) otherwiseClearly that if x 2 A but x 62 Cn for any n, follows that x 62 C0 and hencex 2 Ran(g), so g�1(x) can be applyied in this case.We have to show that h is one-to-one and onto B. To show that h isone-to-one consider distinct x0 and x00 in A. Since both f and g�1 is one-to-one, the case need to be cheked when x0 2 Ck for some k, and x00 62 SnCn.In this case there is k such that h(x0) = f(x0) 2 Dk, whereas h(x00) =g�1(x00) 62 Dk, otherwise we would get that x00 2 Ck+1, contradiction.So,h(x0) 6= h(x00). To show that h is onto B, consider a point y0 in B �SnDn. Where is g(y0) ? Clearly g(y0) 62 C0, also g(y0) 62 Cn, becauseCn+1 = g[[D0]], y0 62 Dn, and g is one-to-one. So there is x0 such thatx0 = g(y) and x0 62 Cn for any n. This shows that for every y 2 B,y 2 Ran(h).2.6.16: CorollaryN � HF.proof:. N � HF by their de�nitions. So we haveN � HF. By proposition2.6.9 HF is countable.The Cantor-Bernstein theorem allows us to establish equipotency ofvarious sets. E.g. the setf0; 1gN = 2N o� all in�nite sequences of 00s and10s is also uncountable.2.6.17: Theorem}(N) � 2N.Proof. For each A � N de�ne the characteristic function of A, � : N !f0; 1g, as follows: �A(n) = � 0 if n 2 A;1 if n 62 AIt is easy to check that the correpondence between sets and their charac-teristic functions is one-to-one mapping of }(N) onto f0; 1gN.

262.6.18: Proposition{ExerciseLet A be an arbitrary set. Then }(A) � 2A.2.6.19: Proposition{ExerciseIf A � B � C and A � C, then all three sets are equipotent.2.6.20: Proposition{ExerciseThe set R of real numbers is equipotent to the closed unit interval [0; 1].Hint: use the preceding proposition with example 2.6.3.2.6.21: TheoremThe set R of real numbers is equipotent to the power set of N, i.e. R �}(N).Proof sketch. To prove he theorem we show that R � 2N, and henceR � }(N), from theorem 2.6.17.To prove this it su�ces, by the Cantor-Bernstein theorem, to showR � 2N and 2N � R.To show that R � 2N, we construct a one-to-one function from theopen unit interval (0; 1) into 2N. The existence of such a function,togetherwith the fact that R � (0;1), gives us R � (0;1) � 2N. The function isde�ned by use of binary expansions of real numbers: map the real whosebinary expansion is 0:1100010 : : : to the function in 2N whose succesivevalues are 1; 1; 0; 0; 0;1;0; : : :. For de�niteness, always select the nontermi-nating binary expansion.To show that 2N � R we use decimal expansions. The functionin in 2Nwhose successive values are 1; 1; 0; 0; 0; 1;0; : : : is maped to the real numberwith decimal expansion 0:1100010 : : :. This maps 2N one-to-one into theclosed interval [0; 19].

273 Propositional LogicThe purpose of this chapter is to introduce the basic questions which onemight ask about formal languages and to formulate them precisely in theframework of the language of sets. We also answer these questions in thecase of Propositional Logic.3.1 The Syntax and Semantics of Propositional Logic3.1.1 Syntax of Propositional LogicLet Symb be the set consisting of the atoms f^;_;!;:;T;F; (;)g and V arbe the set fp0; p1; p2; :::; pi; :::g where i 2 N. We treat the elements of V aralso like atoms. Symb is called the set of logical symbols and parenthesesand V ar is called the set of propositional variables.3.1.1: De�nition (The set of well formed formulas WFF asstrings:)The set of well formed formulas WFF is a subset of (Symb [V ar)�, the�nite words over Symb [V ar, de�ned inductively as follows:Basis: (Atomic formulas of WFF).(i) For each i 2 N pi is in WFF.(ii) F 2WFF.(iii) T 2WFF.Closure:(i) If �1; �2 are in WFF, so is (�1 ^ �2);(ii) If �1; �2 are in WFF, so is (�1 _ �2);(iii) If �1; �2 are in WFF, so is (�1 ! �2);(iv) If � is in WFF, so is :�.The set WFFf!;Fg �WFF is de�ned similarly but using only (i) and(ii) of the basis and (iii) of the closure condition.We shall always use lower case Greek letters to denote elements ofWFF. We shall sometimes write �(p1; p2; ::::; pn) meaning that all thevariables occurring in the word � are among p1; p2; :::; pn.3.1.2: Examples(i) The following are well formed formulas of WFF:((p1 ! T) ^ :(:p3 _ p1)), (((p1 ! p2) ! p1) ! p3), :(:p1 ^ p2),(::p1 _ p2).(ii) The following are not well formed formulas of WFF:(((:)), (:p1)), (:p1), p1 ^ p2, (p1 ^ p2, (p1 ^ p2)), p1p2:)).(iii) The following are well formed formulas of WFFf!;Fg:(((p1 ! F)! p1)! F), ((p1 ! F)! (p1 ! F)).

28 Next we de�ne the set of well formed tree formulas WFTF.3.1.3: De�nition (The set of well formed tree formulas WFTF:)Basis: V ar �WFTF and T;F 2WFTF. They are trees consisting of asingle node.Closure:(i) If T1; T2 2WFTF then the tree with root ^ and T1 as its left son andT2 as its right son is also in WFTF.(ii) If T1; T2 2WFTF then the tree with root _ and T1 as its left son andT2 as its right son is also in WFTF.(iii) If T1; T2 2 WFTF then the tree with root ! and T1 as its left sonand T2 as its right son is also in WFTF.(iv) If T1 2WFTF then the tree with root : and the only subtree T1 as itsson is also in WFTF.Let T 2WFTF. We can think of writing a well formed formula � asthe process of obtaining a string write(T) from a tree T . We start at theleaves and just write them down as strings. If we are at a node labeled bya symbol � from f^;_;!g and two subtrees T1; T2 we add the parenthesesand write the string (write(T1)�write(T2)). If a node is labeled : followedby a subtree T we write the string :write(T). We easily observe thatwrite(T) 2WFF.We can think of reading a formula � as the process of obtaining a tree Tfrom the string �. One can easily convince oneself that writing is unique.i.e. there is exactly one string � which can be obtained from T in theabove way. However, reading � seems more complicated. To establish itsuniqueness we have to prove it. The proof can easily be converted into analgorithm.3.1.4: Theorem (Unique readability of WFF:)For every well formed formula � 2WFF there is exactly one labelled treeT such that write(T) = �.Proof. The proof uses the lemmas below. The details of the proof of thetheorem and the lemmas are left as an exercise. The �rst four lemmas canbe proved independently. To prove lemma 3.1.9 one needs all the previouslemmas. For lemma 3.1.10 one needs only lemma 3.1.9. Finally, to provethe theorem, one needs only lemma 3.1.10.3.1.5: LemmaIf � 2WFF then � is not the empty word and contains at least one variablepi 2 V ar or one of the constants T,F.3.1.6: LemmaLet � 2WFF. Then the number of left parenthesis in � equals the numberof right parentheses in �.

293.1.7: LemmaLet � 2WFF and � be a proper initial segment of the word �, i.e. thereexists a word � such that � 6= � and � = � � �. Then either � containsno parentheses or the number of left parentheses of � is bigger than thenumber of its right parentheses.3.1.8: LemmaLet � 2WFF and � be an initial segment of the word �. If � 6= � and hasno parentheses then � 2 f:g�.3.1.9: LemmaLet � 2 WFF and � be a proper initial segment of the word �. Then� 62WFF.3.1.10: LemmaLet �; �; �1; �; �1 2WFF.(i) Let ��1 2 f^;_;!g. If � = (��� and � = (�1�1�1 then � = �1; � =�1 and � = �1.(ii) If � = :� and � = :� then � = �. Furthermore, there are no �1; �1and no � 2 f^;_;!g such that If � = (�1 � �1.Combining the preceeding lemmata gives a proof of the above theorem.3.1.11: ExerciseChange the de�nition of WFF such that no parentheses are used and showthat the Unique Readability Theorem fails for the resulting de�nition.3.1.12: RemarkThe inductive de�nition of well formed formulas suggests that formulasare de�ned in stages. Inductive de�nitions are bottom up constructions.The Unique Readibility Theorem allows us to view formulas also top downwithout ambiguity. We want to make this more precise.3.1.13: De�nition (Rank of a formula:)Let rank be a function rank : WFF ! N whose value indicates in howmany stages a formula has been built. We de�ne inductively sets WFFnfor n 2N.Basis: Let WFF0 be the set of formulas in fT;Fg [V ar. We call theseformulas also atomic formulas. If � 2WFF0 then rank(�) = 0.Closure: Let �1; �2 2WFFn. Then �1, (�1 ^ �2), (�1 _ �2), (�1 ! �2)and :�1 are in WFFn+1.rank(�1) is de�ned to be the smallest n 2N such that �1 2WFFn.3.1.14: Proposition{ExerciseProve the following:

30(i) WFFn �WFFn+1;(ii) rank(�1 ^ �2) = 1 +maxfrank(�1); rank(�2)g;(iii) rank(�1 _ �2) = 1 +maxfrank(�1); rank(�2)g;(iv) rank(�1 ! �2) = 1 +maxfrank(�1); rank(�2)g;(v) rank(:�1) = 1 + rank(�).We now generalize our notion of well formed formulas. This will beused in the sequel, but it is useful for checkin whether one understands thematerial presented so far.3.1.15: De�nition (The set of well formed formulas WFFS :)Let S = fs1; s2; ::::; smg be a set of symbols and n(si) 2 N be a natu-ral number called the arity of si. Let S1 = S [f(; ; ;)g. Let V ar be theset of propositional variables. WFFS is inductively de�ned as a subset of(S1 [V ar)�.Basis:(i) V ar �WFFS .Closure: If si 2 S and n(si) = k and �1; �2; :::; �k 2 WFFS thensi(�1;�2; :::;�k) 2WFFS .3.1.16: Example(Exercise): Let S = fF;:;^; kukug with n(F) = 0; n(:) = 1; n(^) = 2 ,and n(kuku) = 3. Write some formulas of WFFS .3.1.17: Theorem(Exercise): Formulate and prove the Unique Readibility Theorem forWFFS .The following will be useful later:3.1.18: TheoremLet S be countable. Then WFFS is countable.3.1.2 The Truth Table Semantics of Propositional LogicThe "meaning" of a well formed formula of WFF is a an element of theset f0; 1g, where we think of 0 as "false" and 1 as "true". Note that theset f0; 1g is a subset of N and the intended interpretation of its elementsas "true" and "false" is outside the scope of our mathematical framework.The de�nition of a meaning function given in in the language of sets isthe goal of this subsection. We shall do this in three stages, de�ning truthtables, assignments and only then the meaning function.

313.1.19: De�nition (Truth tables:)Let n 2N. An n-ary truth table TT is a function TT : f0; 1gn! f0; 1g.With each symbol ^;_;! we shall associate binary truth tablesTT^; TT_; TT! respectively in the following way:(i) TT^ is given byTT^(0; 0) = 0, TT^(0; 1) = 0, TT^(1; 0) = 0, TT^(1; 1) = 1,(ii) TT_ is given byTT_(0; 0) = 0, TT_(0; 1) = 1, TT_(1; 0) = 1, TT_(1; 1) = 1,(iii) TT! is given byTT!(0; 0) = 1, TT!(0; 1) = 1, TT!(1; 0) = 0, TT!(1; 1) = 1,(iv) With the symbol : we shall associate a unary truth table TT: de�nedby TT:(0) = 1 and TT:(1) = 0.(v) With the symbols T;F we shall associate the zero-ary truth tables(i.e. constant functions) TTT = 1 and TTF = 0 respectively.3.1.20: RemarkWe can think of the truth tables as behavioural descriptions of boolean cir-cuits. The truth table of a _, (^;:) describes the behaviour of an or{gate(and{gate, not{gate respectively).3.1.21: De�nition (Truth assignments:)A (propositional) truth assignment is a function z : V ar ! f0; 1g. Wedenote by Ass the set f0; 1gV ar of all truth assignments.3.1.22: RemarkWe can think of the variables in V ar as registers and z as a function readingthe content of the registers in a current state.3.1.23: De�nition (Meaning function:)A meaning function M is a function M :WFF� Ass! f0; 1g.We shall denote by MPL the meaning function for Propositional Logic de-�ned inductively as follows:Basis:(i) MPL(pi; z) = z(pi);(ii) MPL(T; z) = TTT = 1;(iii) MPL(F; z) = TTF = 0.Closure:(i) MPL((�1 ^ �2); z) = TT^(MPL(�1);MPL(�2));(ii) MPL((�1 _ �2); z) = TT_(MPL(�1);MPL(�2));(iii) MPL((�1 ! �2); z) = TT!(MPL(�1);MPL(�2));(iv) MPL(:�; z) = TT:(MPL(�)).

323.1.24: Remark(i) Note that this de�nes also a meaning function Mf!;Fg for the wellformed formulas of WFFf!;Fg. As WFFf!;Fg � WFF we set Mf!;Fgto be the restriction of MPL to WFFf!;Fg �Ass.(ii) We note that the de�nition above rests on the Unique Readibility The-orem for the formulas of WFF, as it relies not on the string � but on theunique T� such that write(T�) = �.3.1.25: Examples(i) Show that for every formula � 2 WFF such that � = (�1 ! �1) andfor every propositional assignment z MPL(�; z) = 1.(ii) Show that for every formula � 2WFF such that � = (�1 ^ :�1) andfor every propositional assignment z MPL(�; z) = 0.(iii) Let �1 = (: 1 _ 2) and �2 = (1 ! 2). Show that for everypropositional assignment z MPL(�1; z) = MPL(�2; z).(iv) Choose your favorite set of well formed formulas and propositionalassignments and compute their respective value under MPL.It is obvious from the de�nitions, that the function MPL only dependson �nitely many values of z. The next proposition makes this precise.3.1.26: Proposition (Finite dependency of the meaning function:)Let � 2WFF be a formula with all its propositional variables in the setfp1; p2; :::; png. Let z1 and z2 be two propositional assignments such thatfor every i � n z1(pi) = z2(pi). Then MPL(�; z1) = MPL(�; z2).Proof. (by Induction):Basis: If � 2WFF0 then � = pi for some i � n or � = T or � = F. In allthese cases MPL(�; z) depends only on the value of z(pi) or is constant.Closure: If � 2 WFFn+1 and the proposition is true for all �1; �2 2WFFi i � n, we have four cases.Let � = (�1 ^ �2). As MPL((�1 ^ �2); z) = TT^(MPL(�1; z);MPL(�2; z))and TT^ does not depend on z, the proposition is also true for �.The other cases are left to the reader.The above proposition allows us to associate with each well formedformula � 2WFF a truth table TT� in the following way:3.1.27: De�nition (Truth table associated with �:)Let � 2WFF and let pi1 ; pi2 ; :::; pin be all the variables occuring in �. LetTT� : f0; 1gn! f0; 1g the truth table de�ned byTT�(x1; x2; :::; xn) = MPL(�; z)with z(pij) = xj for j = 1; 2; : : : ; n.

33Let TT be an n-ary truth table. The question arises whether thereexists a formula � 2 WFF such that TT = TT� ? A positive answer tothis question, as it is the case, gives us a justi�cation for the choice of thebasic truth tables (TT^; TT_; TT:) underlying the semantics of WFF.3.1.28: Theorem (Functional completeness of the semantics forWFF:)Let TT be an n-ary truth table. Then there exists a formula � 2 WFFsuch that TT = TT�.Proof. For n = 0 there are two constant truth tables.For n > 0, let x = hx1; x2; ::::; xni 2 f0; 1gn such that TT (x) = 1. Let libe pi if xi = 1 and :pi if xi = 0. Let Cx be the conjunction of all the li,Cx = ((:::(l1 ^ l2) ^ : : : ^ ln). Now let � be the conjunction of all the Cxsuch that TT (x) = 1. It is now easy to verify that TT� = TT .3.1.29: De�nition (Semantics for WFFS :)Let S = fs1; s2; ::::; sng be a set of symbols with arities n(si) 2 N. Foreach i � n let TTi be an n(i)-ary truth table. Let z be a propositionalassignement. We de�ne a meaning function MS inductively as follows:Basis: MS(T; z) = 1, MS(F; z) = 0, MS(pi; z) = z(pi).Closure: For every i � n with n(si) = k and �1; �2; :::; �k 2 WFFSMS(si(�1;�2; :::;�k); z) = TTi(MS (�1);MS(�2); :::;MS(�k)).3.2 Basic Semantic Concepts3.2.1 Validity, Logical Equivalence and Logical ConsequenceValidity, Logical Equivalence and Logical Consequence are fundamentalconcepts of the semantics of formal languages in the most general sense.We now introduce them for Propositional Logic, but the reader should havein mind that they are really concepts about meaning functions.3.2.1: De�nition (Validity and Satis�ability:)(i) We say that a formula � 2WFF is (logically) valid or a tautologyif for every propositional assignment z MPL(�; z) = 1.(ii) We say that a formula � 2 WFF is a contradiction if for everypropositional assignment z MPL(�; z) = 0.(iii) We say that a formula � 2WFF is satis�able if there is a proposi-tional assignment z such that MPL(�; z) = 1.(iv) We say that a set of formulas � � WFF is satis�able if there is apropositional assignment z such that MPL(�; z) = 1 for every � 2 �.We abreviate this as MPL(�; z) = 1. (Strictly speaking, we extendthe function MPL to the power set of WFF.)

343.2.2: Examples(i) Show that � is valid if and only if :� is not satis�able.(ii) Show that � is a contradiction if and only if :� is valid.(iii) Find an in�nite set of valid formulas.(iv) Find an in�nite set of formulas which are contradictions.(v) Find an in�nite set of satis�able formulas which are not valid.3.2.3: Proposition{ExerciseShow that the following formulas � 2WFF are valid:� = (1 ! (2 ! 1)) (i)� = ((1 ! (2 ! 3))! ((1 ! 2)! (1 ! 3))) (ii)� = (((1 ! F)! F)! 1) (iii)3.2.4: De�nition (Logical equivalence:)We say that two formulas �1; �2 are logically equivalent (semanti-cally equivalent) if and only if for every propositional assignement zMPL(�1; z) = MPL(�2; z).3.2.5: Examples(i) Show that � 2WFF is valid if and only if � is logically equivalent tothe formula T.(ii) Show that � 2 WFF is a contradiction if and only if � is logicallyequivalent to the formula F.(iii) Show that � 2WFF is valid if and only if :� is logically equivalentto the formula F.3.2.6: Proposition{Exercise(i) � is a tautology if and only if TT� is the constant function with value1.(ii) � is satis�able if and only if there are x1; x2; :::; xn 2 f0; 1g such thatTT�(x1; x2; :::; xn) = 1.(iii) Two well formed formulas �; 2 WFF are logically equivalent ifand only if they have the same truth tables associated with them, i.e.TT� = TT .

353.2.7: Proposition{ExerciseShow that the following pairs of formulas �1; �2 are logically equivalent:Commutativity: �1 = (1 ^ 2); �2 = (2 ^ 1); (i)�1 = (1 _ 2); �2 = (2 _ 1); (ii)Associativity:�1 = ((1 ^ 2) ^ 3); �2 = ((1 ^ (2 ^ 3)); (iii)�1 = ((1 _ 2) _ 3); �2 = ((1 _ (2 _ 3)); (iv)Distributivity:�1 = ((1 ^ 2) _ 3); �2 = ((1 _ 3) ^ (2 _ 3)); (v)�1 = ((1 _ 2) ^ 3); �2 = ((1 ^ 3) _ (2 ^ 3)); (vi)De Morgan's laws:�1 = :(1 ^ 2); �2 = (: 1 _ : 2); (vii)�1 = :(1 _ 2); �2 = (: 1 ^ : 2); (viii)Double negation: �1 = :: ; �2 = : (ix)3.2.8: De�nition (Logical consequence:)Let � be a (possibly in�nite) set of well formed formulas in WFF, andlet � 2 WFF. We say that � is a logical (semantical) consequence of �or alternatively � logically (semantically) entails � if and only if for everypropositional assignement z such that MPL(�; z) = 1 we have also thatMPL(�; z) = 1. We write � j= � for � entails �.3.2.9: Examples(i) Show that � is valid if and only if the empty set ; entails �, i.e.; j= �;(ii) Show that f�g j= �; and more generally, that if � 2 �, then � j= �.3.2.10: Proposition{ExerciseThe following are some simple but useful properties of the logical relationconsequence:

36(i) (False implies everything) For every � 2WFF we have that fFg j=�;(ii) For every �; 2WFF f�g j= i� (�!) is a tautology;(iii) (Modus Ponens) For every �; �; we have that �[f�; (�!)g j= .(iv) (Monotonicity) If � � �1 �WFF, � 2WFF and � j= � then also�1 j= �.(v) (Consequence) � j= (�!) i� � [f�g j= .In the following we sketch a semantic decision procedure for the logicalconsequence. It is called semantic, because it resorts to the truth tablesassociated with the formulas involved. A syntactic decision procedure isa decision procedure whose only data used are the formulas themselves.Syntactic decision procedures will be discussed in a later section.3.2.11: Theorem (Semantic decision procedure for logical conse-quences:)Let � be a �nite set of well formed formulas in WFF and � 2 WFF.There is a decision procedure which decides whether � j= �.Proof. First we observe that � j= � i� for every �[f:�g is not satis�able.Let �f 1; : : : ; ng Let TT be the truth table for (Vi=1;:::;n i ! �). Byproposition 3.1.26 this truth table is well de�ned and �nite. � j= � i� TTis constant with unique value 0.3.2.12: ExerciseGeneralize the notions tautology, logical equivalence, logical consequence,truth table associated with a formula, functional completeness to WFFSwith semantics given by arbitrary truth tables and �nd examples and counterexamples for these generalized notions.We end this subsection with some additional exercises.3.2.13: ExercisesLet k 2 N. We de�ne WFF(k) to be the set of formulas � 2 WFFcontaining only the variables p1; p2; : : : ; pk.(i) Count the number of distinct formulas in WFF(k).(ii) Count the number of formulas in WFF(k) which are pairwise logi-cally not equivalent.(iii) How long is the longest sequence of formulas �1; �2; : : : ; �n 2WFF(k) such that for every i < n we have that �i j= �i+1 but�i+1 6j= �i.

373.2.2 SubstitutionThe purpose of this subsection is to give a precise de�nition of what wemean by replacing or substituting variables by formulas and replacing orsubstituting subformulas by other formulas.3.2.14: De�nition (Substitution of variables:)Let � 2WFF be a well formed formula. Let s : V ar!WFF be a functionassigning to each propositional variable pi; i 2N a well formed formula. sis called a substitution function. We de�ne inductively a function subst :WFF �WFFV ar ! WFF. subst(�; s) is the formula obtained from �and s by replacing all the variables pi in � simultaneously by s(pi).Basis: subst(pi; s) = s(pi), subst(F; s) = F, subst(T; s) = T.Closure: If �; �1; �2 2WFF then(i) subst((�1 ^ �2); s) = (subst(�1; s) ^ subst(�2; s));(ii) subst((�1 _ �2); s) = (subst(�1; s) _ subst(�2; s));(iii) subst((�1 ! �2); s) = (subst(�1; s)! subst(�2; s));(iv) subst(:�; s) = :subst(�; s).3.2.15: ExamplesMake your own examples for s; � and compute subst(�; s).3.2.16: Proposition{Exercise (Finite dependency of substitution:)Let � 2 WFF be a formula with all its propositional variables in the setfp1; p2; :::; png. Let s1 and s2 be two substitution functions such that forevery i � n s1(pi) = s2(pi). Then subst(�; s1) = subst(�; s2).3.2.17: Proposition{Exercise(i) Let � 2 WFF be not satis�able and s be a substitution function.Then subst(�; s) is not satis�able.(ii) Let � 2WFF be a tautology and s be a substitution function. Thensubst(�; s) is a tautology.(iii) Let � 2WFF , z 2 Ass an assignment and s a substitution function.De�ne the assignment z0 2 Ass by z0(pi) = MPL(s(pi); z). ThenMPL(�; z0 = MPL(subst(�; s); z).3.2.18: ExerciseVisualize for yourself the e�ect of substitution on � when � is consideredas a tree.We shall also de�ne substitution for subformulas rather thanfor variables.

383.2.3 Normal FormsThis subsection introduces several normal forms of well formed formulas. Ingeneral, a normal formof a formula� 2WFF is a formula 2WFF whichis equivalent to � and whose syntax is constraint by certain limitations suchas(i) negation symbols are only permitted if they occur immediately beforea variable (negational normal form);(ii) when building a formula, conjunctions are applied last (conjunctivenormal form), or(iii) when building a formula, disjunctions are applied last (disjunctivenormal form).In the following we make this precise. The purpose of this subsectionis twofold: It gives us many examples of equivalent formulas and it pro-vides us with preprocessing techniques which are the basis for our furtherdevelopment.3.2.19: De�nition (Negational Normal Form:)We de�ne a subset NNF �WFF inductively as follows:Basis: The variables pi and their negations :pi are in NNF. F;T 2NNF.Closure: If �; 2NNF so are (� ^) and (� _).3.2.20: RemarkNote that formulas in NNF do not contain the symbol !. As � ! islogically equivalent to :� _ formulas containing ! `somehow' contain a`hidden' negation.3.2.21: Examples((p1 ^ :p2) _ (:p2 _ F)) is in NNF but((p1 ^ :p2) _ (:p2 ! F)) and ((p1 ^ :p2) _ :(:p2 _F)) are not.3.2.22: Theorem (Negational Normal Form:)For every formula � 2WFF there is a formula 2NNF such that:(i) � is equivalent to and(ii) � and have the same variables.Proof. We de�ne a procedure (function) mvin : WFTF ! WFTF in-ductively. The procedure consists of transforming the tree presentation ofa formula by moving the negations to the leaves while preserving logicalequivalence. By abuse of notation we shall write nevertheless � instead ofT�, the tree obtained from � by the Unique Readability Theorem.Basis:

39(i) mvin(pi) = pi, mvin(F) = F, mvin(T) = T.(ii) mvin(:pi) = :pi, mvin(:F) = T, mvin(:T) = F.Closure:(i) mvin(::�) = mvin(�);(ii) mvin((�1 ^ �2)) = (mvin(�1) ^mvin(�2));(iii) mvin((�1 _ �2)) = (mvin(�1) _mvin(�2));(iv) mvin((�1 ! �2)) = (mvin(:�1) _mvin(�2));(v) mvin(:(�1 ^ �2)) = (mvin(:�1) _mvin(:�2));(vi) mvin(:(�1 _ �2)) = (mvin(:�1) ^mvin(:�2));As mvin is de�ned forWFTF rather thenWFF it is well de�ned and it iseasy to verify (cf. Proposition 3.2.7) that logical equivalence is preserved.3.2.23: De�nition (Conjunctive and Disjunctive Normal Form:)We de�ne subsets CNF;DNF � WFF inductively in two stages as fol-lows. We �rst de�ne DISJ;CONJ �WFF:Basis: The variables pi and their negations :pi are both in DISJ andCONJ. F;T 2DISJ. F;T 2 CONJ.Closure: If �; 2 DISJ so is (� _).If �; 2 CONJ so is (� ^).Now we de�ne CNF;DNF �WFF:Basis: DISJ � CNF. CONJ � DNF.Closure: If �; 2 CNF so is (� ^).If �; 2DNF so is (� _).3.2.24: Examples((p1 _ :p2) ^ (:p2 _ F)) is in CNF but ((p1 _ :p2) ^ (:p2 ! F)) and((p1 ^ :p2) _ :(:p2 _ F)) are not.3.2.25: Theorem (Conjunctive Normal Form:)For every formula � 2WFF there is a formula 2 CNF such that:(i) � is equivalent to and(ii) � and have the same variables.Proof. The proof is similar to the proof of the Negational Normal FormTheorem. We de�ne inductively a function mvout whose domain is the setof tree presentations of formulas inNNF which gives the tree presentationof the desired formula in CNF.Basis:

40If � 2 CNF then mvout(�) = �.Closure: Assume �; �1; �2 are in CNF.(i) mvout((� _ (�1 ^ �2))) = (mvout((� _ �1)) ^mvout((� _ �2)));(ii) mvout(((�1 ^ �2) _ �)) = (mvout((�1 _ �)) ^mvout((�2 _ �)));The remaining details are left as an exercise.3.2.26: RemarkNote that the construction in Theorem 3.1.28 gives for any truth table TT a 2 CNF. This can be exploited for an alternative proof of Theorem 3.2.25.3.2.27: Proposition{Exercise (Disjunctive Normal Form:)For every formula � 2WFF there is a formula 2DNF such that:(i) � is equivalent to and(ii) � and have the same variables.3.3 Deduction Methods and CompactnessIn this section we present to methods of deduction: proof sequences (orHilbert style deduction) and resolution (popular in Arti�cial Intelligenceand Automated Theorem Proving). The �rst is supposed to model humanreasoningr. This is an exageration: In the best case it models the waymathematicians and other scholastically educated people write down theirarguments, when pressed to do so. In short, it models a stylized form ofhuman reasoning. In this sense it is user friendly. In contrast to this,resolution is more �t for machine implementations, and in this sense it ismore machine friendly.3.3.1 Proof SequencesIn this subsection we want to characterize the notion of logical consequencesyntactically. To keep things simple we restrict ourselves to the case ofpropositional formulas in WFFf!;Fg �WFF .3.3.1: De�nition (The axioms:)For every �; ; � 2WFFf!;Fg(i) (�! (! �))(ii) ((�! (! �))! ((�!)! (�! �)))(iii) (((�! F)! F)! �)are axioms.3.3.2: De�nition (Deducible formulas:)Let � � WFFf!;Fg be a set of formulas. We de�ne inductively the setDed(�) as follows:Basis:

41(i) � � Ded(�);(ii) If � 2WFFf!;Fg is an axiom then � 2 Ded(�).Closure: (Modus ponens)If � 2 Ded(�) and (�!) 2 Ded(�) then 2 Ded(�).Ded(�) will turn out to be an inductive de�nition of the logical conse-quences of �. First we state:3.3.3: Proposition{Exercise (Soundness of Ded(�):)Let � � WFFf!;Fg be a set of formulas and � 2 WFFf!;Fg. If � 2Ded(�) then � j= �.3.3.4: ExamplesProve the following statements:(i) Ded(;) is a subset of the tautologies of WFFf!;Fg.(ii) Ded(fFg) =WFFf!;Fg(iii) Let � be in�nite and � 2 Ded(�). Then there is a �nite subset�0 � � such that � 2 Ded(�0).To show that a formula � 2 Ded(�) one has to unwind the inductivede�nition of Ded(�). Such an unwinding will be called a proof sequence.More precisely:3.3.5: De�nition (Proof sequences:)Let � � WFFf!;Fg be a set of formulas and �1; : : : ; �n be formulas inWFFf!;Fg We say that �1; : : : ; �n is a proof sequence over � if for eachi � n either(i) �i is an axiom or �i 2 � or(ii) (Modus ponens) there are k; l < i such that �l = (�k ! �i)We write � ` � if there is a proof sequence �1; : : : ; �n over � such that�n = �.3.3.6: Proposition{ExerciseLet � � WFFf!;Fg be a set of formulas and � 2 WFFf!;Fg. Then� 2 Ded(�) i� � ` �.3.3.7: Corollary (Soundness of proof sequences)Let � � WFFf!;Fg be a set of formulas and � 2 WFFf!;Fg. If � ` �then � j= �.3.3.8: ExerciseShow the following statements:

42(i) If ; ` � then � is a tautology.(ii) For every � 2WFFf!;Fg we have that F ` �.(iii) Let � be in�nite and � ` � there is a �nite subset �0 � � such that�0 ` �.3.3.9: De�nitionWe say that � � WFFf!;Fg is inconsistent if � ` F. If � is not incon-sistent, we say that � is consistent.3.3.10: RemarkNote, by the soundness of proof sequences, that if � is inconsistent, then �is not satis�able.3.3.2 Manipulations of Proof SeequencesThe following are useful properties for the manipulation of proof sequences.3.3.11: Proposition{ExerciseLet �0 � � �WFFf!;Fg be a set of formulas and � 2WFFf!;Fg.(i) If �0 ` � then � ` �;(ii) If �1; �2; : : : ; �n is a proof sequence over � then for each i � n wehave that � ` �i.(iii) If � ` � and � ` (�!) then � ` .(iv) If � ` (�! (� !)) and � ` (�! �) then � ` (�!).3.3.12: Proposition (Deduction Theorem)Let � �WFFf!;Fg be a set of formulas and �; 2WFFf!;Fg.� ` (�!) i� � [f�g ` .Proof. (i) Assume � ` (�!). We have to prove that � [f�g ` . Byproposition 3.3.11 (i) above we have � [f�g ` (�!) and, using modusponens, � [f�g ` .(ii) Assume �[f�g ` . We have to show that � ` (�!). Equivalently,we can show that (�!) 2 Ded(�). Let K � Ded(�[f�g) be the set offormulas such that � ` (�!). We show that K = Ded(� [f�g).Basis: � � K and all the axioms are in K (Exercise). In the case that = � we use that ; ` (�! �).Closure: Assume � and (� !) are in K. We have to show that 2 K.By assumption � ` (� ! �) and � ` (� ! (� !)), therefore, byproposition 3.3.11 (iv), � ` (�!).

433.3.13: Proposition{Exercise (Dychotomy Theorem)Let � �WFFf!;Fg be a set of formulas and �; 2WFFf!;Fg.If both � [f�g ` and � [f(�! F)g ` then � ` .Hint for proof. Use the Deduction Theorem to provef(�!); (! �)g ` (�! �)Then use this to prove the following three tautologies:((�!)! ((! F)! (�! F)))(((�! F)!)! ((! F)! ((�! F)! F)))(((! F)! ((�! F)! F))! (((! F)! (�! F))!))Then use these three tautologies and Modus Ponens to prove the Dy-chotomy Theorem.Proof sequences capture the essence of proofs and can be used for similarformulas in the following sense:3.3.14: Proposition{ExerciseLet � ` � and s : V ar!WFF be a substitution. Thenfsubst(; s) : 2 �g ` subst(�; s):3.3.3 Completeness and CompactnessThe following shows that the method of proof sequences is su�ciently pow-erful to obtain all tautologies, or, more generally, all logical consequencesof a given set of formulas.3.3.15: Theorem (Completeness Theorem for Deductions)Let � �WFFf!;Fg be a set of formulas and � 2WFFf!;Fg.If � j= � then � ` �.To prove this theorem we need a de�nition and two lemmas.3.3.16: De�nition (Maximally consistent set)A set � of WFF is maximally consistent if it is consistent, and for every� 2WFF either � 2 � or :� 2 �.3.3.17: Lemma (Maximally consistent extensions)Let � �WFF be a consistent. Then there is a maximally consistent ��such that � � ��.

44T. he proof is in stages:(i) Assume now, that � is consistent. Let f�i : i 2 Ng be an enumerationof the formulas inWFFf!;Fg. We de�ne in stages a set �! �WFFf!;Fgin the following way:�0 = �;�n+1 = �n[f�ng if �n[f�ng is consistent, and �n+1 = �n[f(�n ! F)gotherwise.�! = Sf�i : i 2Ng.(ii) For every i 2 N we use the Dychotomy Theorem to show that �i isconsistent.(iii) �! is consistent. For otherwise, there are formulas f 1; : : : ; kg suchthat f 1; : : : ; kg ` F. Then there is m 2N such that 1; : : : ; k;F 2 �m,and therefore, �m is inconsistent, contrary to (iv).(iv) �! is a maximally consistent extensions of �, i.e. for every 2WFFf!;Fg either 2 �! or : 2 �!. As f�i : i 2Ng is an enumerationof the formulas in WFFf!;Fg, = �n for some n 2N. Therefore 2 �nor : 2 �n.Now we put �� = �!, which completes the proof.3.3.18: RemarkNote that di�erent enumerations of WFFf!;Fg give di�erent sets �! forthe same �. In general for countable � there are 2! maximally consistentextensions.3.3.19: Lemma (Assignment for maximally consistent set)Let � � WFF be maximally consistent. Then there is an assignmentz : V ar! f0; 1g such that MPL(�; z) = 1. In other words, � is satis�able.T. he proof is in stages:(i) We �rst de�ne a propositional assignment z : V ar ! f0; 1g for � in thefollowing way: z(pi) = 1 i� pi 2 �. As � is maximally consistent, this iswell de�ned.(ii) All we need to show now, is that MPL(; z) = 1 i� 2 �. This we doby induction for every 2WFFf!;Fg. For atomic this follows from thede�nition of z. Assume we have shown it for 2 and = (1 ! 2). ThenMPL(; z) = 1 i� MPL((1 ! 2); z) = M!(MPL(1; z);MPL(2; z)) =1. By the induction hypothesis MPL(1; z) = 1 i� 1 2 �. So assume,for contradiction, that MPL(1; z) = 1, MPL(2; z) = 0 and 2 �. Then 1; (2 ! F); are all in �, which contradicts the consistency of �.Conclusion: MPL(�; z) = 1, and as � � �, MPL(�; z) = 1 which showsthat � is satis�able.Proof of theorem 3.3.15. The proof is in several stages.(i) (Exercise) First we observe that it su�ces to prove that if � consistent

45then � is satis�able. For this we use the Deduction Theorem.(ii) By the soundness of proof sequences, if � is satis�able, then � is con-sistent.(iii) Assume now, that � is consistent. So there is �� maximally consistentwith � � �� by lemma 3.3.17. But �� is satis�able by lemma 3.3.19.3.3.20: RemarkThe above proof of the completeness theorem is mathematically very el-egant, but hides the construction of proof sequence, whose existence weshow. This proof method was independently suggested by L.Henkin (1949),Hasenjaeger and J.Hintikka (both before 1950 too). The actual constructionof proof sequences is the topic of courses in Automated Theorem Provingor in Textbooks on Logic prior to 1960.3.3.21: Corollary (Compactness Theorem)Let � �WFFf!;Fg be an in�nite set of formulas. � is satis�able i� every�nite subset �0 � � is satis�able.Proof. By the completeness theorem above � is satis�able i� � is con-sistent. Clearly, if � is consistent, so is every �nite subset �0 � �.Conversely, assume � is inconsistent. Therefore there is a proof se-quence 1; : : : ; k;F 2 �, which shows the inconsistency, and therefore,f 1; : : : ; k;Fg � � is a �nite inconsistent subset.3.3.4 ResolutionIn this subsection we introduce a syntactic method of checking whether aset of formulas � is satis�able called resolution. Resolution is a machinefriendly method which involves some preprocessing transforming the set� �WFF into a set clause(�) of clauses.3.3.22: De�nition (Clauses:)(i) A literal is a well formed formula which is either a propositionalvariable, pi, or the negation of a propositional variable, :pi. Theconstant F is also a literal. We denote literals by lj .(ii) A clause is a �nite set of literals fl1; l2; :::; lkg. We denote clauses byCj. We denote the empty clause (the empty set of literals) by 2.(iii) Let z be a propositional assignment. The meaning function Mclausefor clauses is de�ned inductively as follows:Basis: Mclause(fljg; z) =MPL(lj ; z). Mclause(2; z) = 0.Closure: Mclause(fl1; l2; :::; lkg; z) = maxfMclause(fljg; z) : j � kg.If S is a set of clauses Mclause(S; z) = minfMclause(C; z) : C 2 Sg.

46(iv) Let � 2 CNF be formula in conjunctive normal form. We de�ne aset clause(�) of clauses inductively as follows:Basis: clause(pi) = fpig. clause(:pi) = f:pig. clause(F) = f2g.Closure:(1) If clause(�1) = fC1g and clause(�2) = fC2g then clause(�1 _�2) = fC1 [C2g.(2) clause(�1 ^ �2) = clause(�1) [clause(�2).(3) If � � CNF is a set of formulas in conjunctive normal form thenclause(�) = Sfclause(�) : � 2 �g.(v) If � � WFF is a set of well formed formulas (not necessarily inconjunctive normal form) then clause(�) = Sfclause(cnf(�)) : � 2�g. Here cnf(�) denotes a formula in CNF logically equivalent to�.3.3.23: Proposition{Exercise(i) Let � 2WFF be a set of well formed formulas and z be a proposi-tional assignment. ThenMPL(�; z) = Mclause(clause(�); z):(ii) In particular � is satis�able if and only if there is a propositionalassignment z such that Mclause(clause(�); z) = 1.3.3.24: De�nition (Resolution trees:)(i) Let C1 [fpjg; C2 [f:pjg be two clauses. We say that the clauseC1[C2 is obtained from C1[fpjg; C2[f:pjg by one resolution step,and we write C1 [fpjg; C2 [f:pjgC1 [C2(ii) A resolution tree T is a binary (directed) labeled tree T = hV;Ei suchthat the labels of V are clauses and if C1; C2 are labels of the two sonsof a vertex labeld with C then C1 = D1 [fpjg, C2 = D2 [f:pjg andC = D1 [D2. In other words, the label of the father is the result ofperforming a resolution step on the labels of its two sons. Note thatseveral vertices may carry the same label.(iii) Let S be a set of clauses and C be a clause. We say that S proves Cby resolution, if there is a resolution tree with the root labeled C andall the leaves labeled with clauses from S. We write S `res C for Sproves C by resolution.3.3.25: Examples

47(i) Draw a resolution tree for S `res 2 forS = ffp1g; fp2g; f:p1;:p2gg:(ii) Draw a resolution tree for S `res 2 forS = ffp1; p2; p3g; f:p1; p2g; f:p3; p2g; f:p2gg:The next proposition establishes that resolution steps preserve themeaning of the clauses on which they are based. We call this the soundnessof resolution steps. More precisely:3.3.26: Proposition (Soundness of Resolution:)(i) Let S be a set of clauses and C1 [fpjg; C2 [f:pjg 2 S. Let zbe a propositional assignment such that Mclause(S; z) = 1. ThenMclause(S [fC1 [C2g; z) = 1.(ii) Let T be a resolution tree and S0 be the set of clauses which are the la-bels of its leaves and S the set of all its labels. Let z be a propositionalassignment such that Mclause(S0; z) = 1. Then Mclause(S; z) = 1.(iii) If S is a set of clauses such that S `res 2 then S is not satis�able.Proof. We prove only (i). To prove (ii), we can proceed by induction onthe depth of the tree applying (i) as the induction step. (iii) is a directconsequence of (i).So let C1 [fpjg; C2 [f:pjg 2 S be two clauses and z be a propositionalassignment such that Mclause(S [fC1 [fpjg; C2 [f:pjgg; z) = 1. Wehave to show that Mclause(S [fC1 [C2g; z) = 1. It su�ces to prove thecase where z(pj) = 1, as the case z(pj) = 0 is similar. Now z(pj) = 1implies that Mclause(C2; z) = 1 and therefore Mclause(C1 [C2; z) = 1. AsMclause(S; z) = 1 we also have Mclause(S [fC1 [C2g; z) = 1.this completes the proof of (i).We would like to state a completeness theorem for resolution. Theobvious formulation would be that for a set of clauses S and a clause Cwe have that S `res C i� C is a logical consequence of S. The followingexample shows that this is not true:3.3.27: ExampleLet S be ffp0gg and C be fp0; p1g. Clearly C is a logical consequence of Sbut there is no resolution step applicable given S only.The best we can hope for is the following:3.3.28: Theorem (Completeness of Resolution for Satis�ability)Let S be a set of clauses. S is not satis�able i� S `res 2.

48Proof. This will follow from the Compactness Theorem and the Complete-ness of the Davis{Putnam Procedure, below.3.3.29: De�nition (Davis{Putnam Procedure)Let S be a �nite set of clauses. Without loss of generality let p0; : : : ; pn beall the variables occuring in S.We de�ne inductively sets of clauses Sj , Sj(pos), Sj(neg), Sj(�) for j =0; : : : ; n as follows:S0 = S,Sj(pos) = fC 2 Sj : pj 2 Cg,Sj(neg) = fC 2 Sj : :pj 2 Cg,Sj(�) = fC 2 Sj : pj 62 C and :pj 62 Cg,Sj+1 = Sj(�) [fC [D : C [fpjg 2 Sj(pos); D [f:pjg 2 Sj(neg)g.3.3.30: LemmaFor every j = 0; : : : ; n Sj is satis�able i� Sj+1 is satis�able.Proof. If Sj is satis�able then Sj+1 is satis�able, by the soundness ofresolution. So let us assume that Sj+1 is satis�able by a truth assignmentz. Let z1 be the truth assignment obtained from z by putting z1(pj) =1�z(pj). An easy computation shows that if neither z nor z1 satisfy Sj thenthere are clauses C;Dwith C[D 2 fC[D : C[fpjg 2 Sj(pos); D[f:pjg 2Sj(neg)g and Mclause(C [D; z) = 0, contradiction.3.3.31: LemmaSn+1 is either empty or contains only the empty clause. Furthermore, Sn+1is empty i� S is satis�able.Proof. Exercise.3.3.32: Theorem (Completeness of the Davis{PutnamProcedure)A �nite set of clauses S is satis�able i� the Davis{Putnam Procedure re-turns the empty set.Proof. Use the lemmas.3.3.33: Remark (Complexity of Resolution)The Davis{Putnam Procedure seems rather crude and may need an expo-nential number of resolution steps. Its performance is also sensitive tothe numbering of the variables. However, it was shown in a sequence ofpapers (Tseitin, Galil, Haken, Urquhart, Szemeredi) that there are manysets of n clauses S which are unsatis�able and which need an exponential

49number of resolution steps to discover the unsatis�ability. In the case ofaverage complexity the situation is more complex as it depends on the inputdistribution for clauses. There are quite natural distributions for which res-olution is polynomial on the average, and others, equally natural, for whichresolution is exponential on the average.3.4 Compactness3.4.1 A Semantic Proof of CompactnessAs a corollary to the Completeness Theorem we stated the CompactnessTheorem. We now give a more general version with a semantic proof, whichis structurally very similar to the proof of the Completeness Theorem.3.4.1: De�nitionLet � � WFF be an in�nite set of formulas (even uncountable). We saythat � is �nitely satis�able if every �nite subset �0 � � is satis�able.3.4.2: ExerciseLet � � WFF be an in�nite set of formulas (even uncountable) and � 2WFF. Assume that neither � [f�g nor � [f:�g are �nitely satis�able.Then � is not �nitely satis�able.3.4.3: Theorem (Compactness Theorem)Let � � WFF be an in�nite set of formulas (even uncountable). � issatis�able i� � is �nitely satis�able.Proof. The proof is in stages. Here we prove only the countable case.The uncountable case will be dealt with in an exercise in the section onwell{orderings.(i) Clearly, if � is satis�able, then � is �nitely satsi�able.(ii) Assume now, that � is �nitely satis�able. Let f�i : i 2 Ng be anenumeration of the formulas in WFF. (For uncountable � we would usesome well ordering of the formulas). We de�ne in stages a set �! �WFFin the following way:�0 = �;�n+1 = �n[f�ng if �n[f�ng is �nitely satis�able, and �n+1 = �n[f:�ngotherwise.�! = Sf�i : i 2Ng.(iii) For every i 2 N we use the exercise above to show that �i is �nitelysatis�able.(iv) �! is �nitely satis�able. For otherwise, there is a �nite X � � whichis not satis�able. Then there is m 2 N such that X � �m, and therefore,�m is not �nitely satis�able, contrary to (iii)(v) �! is a maximally �nitely satis�able extensions of �, i.e. for every 2WFF either 2 �! or : 2 �!. As f�i : i 2 Ng is an enumeration

50of the formulas in WFF we have that = �n for some n 2 N. Therefore 2 �n or : 2 �n.(vi) We now de�ne a propositional assignment z : V ar ! f0; 1g for �!in the following way: z(pi) = 1 i� pi 2 �!. As �! is maximally �nitelysatis�able, this is well de�ned.(vii) All we need to show now, is that MPL(; z) = 1 i� 2 �! for every 2WFF. This we do by induction: For atomic this follows from thede�nition of z. Assume we have shown it for 1 and 2. If = (1 ^ 2),then MPL(; z) = MPL((1 ^ 2); z) = M^(MPL(1; z);MPL(2; z)) = 1i� both 1 and 2 are in �!. By the fact that �! is maximally �nitelysatis�able this is the case i� 2 �!. The cases for = (1 _ 2), =(1 ! 2) and = (: 1) are similar and left as an exercise.Conclusion: MPL(�!; z) = 1, and as � � �!, MPL(�; z) = 1 which showsthat � is satis�able.3.4.2 Applications of Compactness: De�nabilityIn this subsection we show some applications of the Compactness Theorem.For this we need some more de�nitions:3.4.4: De�nition (De�nability)(i) Let � be a set of formulas in WFF. Let Ass(�) be the set of truthassignments z 2 Ass such that MPL(�; z) = 1. Note that Ass(T) =Ass, the set of all truth assignments.(ii) Let K be a subset of Ass. We say that K is de�nable in WFF ifthere is a set � of formulas in WFF such that K = Ass(�).(iii) A set K of truth assignments is �nitely de�nable if there is a �nite� such that K = Ass(�).3.4.5: Examples(i) Let K0 be the set of truth assignments z such that z(p0) = 1. ThenK0 = Ass(p0), and therefore is de�nable.(ii) Let K1 be the set of truth assignments z such that z(pi) = z(p2i) forevery i 2 N. Then K1 = Ass(�1), for �1 = f((pi ! p2i) ^ (p2i !pi)) : i 2Ng, and therefore is de�nable.(iii) If K = Ass(�) and K 0 = Ass(�0) , then K\K0 is de�nable by �[�0.(iv) If K = Ass(�) and K0 = Ass(�0) , is K [K 0 de�nable by f� _ :� 2 �; 2 �0g?(v) Let K = Ass(�) and K0 = Ass(�0), what can you say about Ass(�\�0)? Study several special cases.

51(vi) If � � �0 then Ass(�0) � Ass(�).(vii) Let KT be the set of truth assignments z such that z(pi) = 1 forevery i 2 N. Note that KT has exactly one element and is de�nableby fpi : i 2 Ng. (Exercise: Show that KT is not de�nable by any�nite set � of formulas inWFF, as in such a � there are only �nitelymany variables.)(viii) If K = Ass(�) for some �nite �, then the complement K 0 = Ass nKis also de�nable. (Exercise: Describe �0 which de�nes K0.)3.4.6: Proposition(i) Let K be a de�nable set of truth assignments such that Ass n K isalso de�nable, i.e. let K = Ass(�) and let Ass nK = Ass(�0). Thenthere is a �nite subset �0 � � such that K = Ass(�0).(ii) Let K be a set of truth assignments. K is �nitely de�nable i� bothK and its complement are de�nable.Proof. (i) By assumption and (iii) above K \ K 0 = ; = Ass(� [�0).Therefore � [�0 is not satis�able. By the Compactness Theorem there isa �nite subset �1 � � [�0 which is not satis�able. Let �0 = � \ �1. By(vi) above, we have K � Ass(�0). To show that Ass(�0) � K it su�ces toshow, that Ass(�0) \ (Ass nK) = ;. But, as �1 is not satis�able, neitheris �0 [�0, because �1 � �0 [�0.(ii) follows from (i) and (viii) above.3.4.7: Exercises(i) Show that Ass nKT is not de�nable.(ii) Let Keven be the set of truth assignments z such that z(p2i) = 1 forevery i 2N. Show that Keven is not �nitely de�nable.The following was not presented in the course:3.4.8: De�nitionsLet K be a set of truth assignments.(i) We say that K does depend on a variable pi if there are truth assign-ments z and z0 which only di�er for pi, i.e. with z(pj) = z0(pj) forevery j 6= i, such that z 2 K and z0 62 K.(ii) Let Support(K) be the set of variables on which K depends.

52(iii) We say that K has �nite support if Support(K) is �nite.(iv) Let � be a set of formulas in WFF. We say that � is satis�able overK if there is a truth assignment z 2 K such that MPL(�; z) = 1.3.4.9: Examples(i) If K is �nitely de�nable, then K has �nite support.(ii) Keven does not have �nite support.3.4.10: Proposition (Finite Support)Let K be a set of truth assignments. K is �nitely de�nable i� K has �nitesupport.Proof. By (i) in the example above, if K is �nitely de�nable, then K has�nite support. So assume,K has �nite support. Then it su�ces to describethe truth table describing K on the variables of Support(K).3.4.3 Truth Table Extensions of Propositional LogicIn this subsection we consider extensions of propositional logic by in�nitaryconnectives. Let JK be a new symbol.3.4.11: De�nition (Syntax of WFF(J))The set of in�nitary formulasWFF(J) is de�ned inductively as follows:Basis: WFF �WFF(J).Closure:(i) If � and are in WFF(J), so are (� ^) (� _), and :�.(ii) If �i are in WFF(J) for i 2 N, then Ji2N �i is in WFF(J).3.4.12: De�nition (K-semantics for WFF(J))Let K be a set of truth assignments and z : Var! f0; 1g be a truth assign-ment. We de�ne the meaning function MK(�; z) for formulas inWFF(J)inductively as follows:Basis: If � 2WFF then MK (�; z) = MPL(�; z).Closure: (i) MK((�1 ^ �2); z) = TT^(MK (�1);MK(�2));(ii) MK((�1 _ �2); z) = TT_(MK(�1);MK(�2));(iii) MK((�1 ! �2); z) = TT!(MK (�1);MK(�2));(iv) MK(:�; z) = TT:(MK (�));(v) MK(Ji2N �i; z) = 1 i� ẑ 2 K for ẑ(pi) = MK(�i; z).3.4.13: Examples(i) For K = KT this de�nes an in�nite conjunction. In this case wedenote J by V.

53(ii) For K is the set of truth assignments with at least one value 1 thisde�nes an in�nite disjunction. In this case we denote J by W.3.4.14: ExerciseDe�ne the notions satis�able, valid, logical consequence, etc. forWFF (J) with the K-semantics.3.4.15: De�nition (Compact Propositional Logic)Let K be a set of truth assignments. We say that K is compact ifWFF (J) with the K-semantics is compact, i.e. for every set � ofWFF (J), � is satis�able under the K-semantcis i� every �nite subset�0 � � is satis�able under the K-semantics.3.4.16: Examples(i) If K is �nitely de�nable inWFF then K is compact.(ii) KT is not compact.(iii) Keven is not compact.3.4.17: Theorem (Friedman's Theorem)Let K be a set of truth assignments. The following are equivalent:(i) K is �nitely de�nable in WFF;(ii) K is of �nite support;(iii) K is compact.Proof. (i)) (iii) is (i) in the example above. (ii)) (i) is the Fi-nite Support Theorem of the previous subsection. So we are left to prove(iii)) (ii).Let � be the formulasJi2N p2i and be the formulas :Ji2N p2i+1. Let� be the set of formulas f((p2i ! p2i+1) ^ (p2i+1 ! p2i)) : i 2Ng.By assumption WFF(J) is compact in the K-semantics.Claim 1: f�; g [� is not satis�able in the K-semantics.Assume, for contradiction, that z is a truth assignment satisfying f�; g[�.Let z1 be de�ned by z1(pi) = z(p2i) and let z2 be de�ned by z2(pi) =z(p2i+1). As z satis�es � we have that z1 = z2. Furthermore, MK (�; z) =MK(; z) = 1. But we note that subst(�; s1) is equivalent to :subst(; s2)for substitutions s1 with s1(p2i) = pi and s2 with s2(p2i+1) = pi. Sowe have MK(�; z) = 1 = MK(subst(�; s1); z1) = 1 = MK(; z) =MK(:subst(�; s2); z2) = 0, which is a contradiction.Claim 2: If K does not have �nite support, then every �nite subset �0 of

54f�; g [� is satis�able in the K-semantics.s follows from the de�nition of the support of K.Assuming now, that K has no �nite support, we get a contradiction toClaim 1.3.4.18: CorollaryIf K is not compact, then either K or Ass nK is not de�nable in WFF.

554 First Order LogicIn the previous chapter we have studied the syntax and semantics of Propo-sitional Logic by modelling both within the language of sets. We have setthe examples of the type of reasoning which we can pursue when studyingsyntax and semantics of logic. The central notion in such a study is thenotion of logical consequence. In this chapter we shall follow the same lineof development in studying First Order Logic.First Order Logic is a formal language for describing structures of alge-braic nature. Historically, the �rst examples of structures indeed were mo-tivated by the developments in Abstract Algebra, i.e. the study of groups,rings, �elds, semi{groups and many others. In Computer Science suchstructures are studied under the name of abstract data types such as words,strings, stacks, lists, doubly linked lists, undirected and directed graphs andmany others. The structures mentioned are of di�erent kinds, dependingon which notions we declare to be basic. The syntactic list of basic notionswill be called a vocabulary. The semantic counterpart of a vocabulary � isan interpretation of the vocabulary � , in short, a �{structure. A `museum'of structures is introduced to illustrate the rather abstract concept of a�{structure.The chapter proceeds as follows:We �rst introduce vocabularies and their interpretations, followed by themuseum of examples.Next we de�ne for each vocabulary � the set of well formed �{formulaswhich forms the syntax of �rst order logic. Then we de�ne its semantics, ameaning function which has three arguments, a formula, a structure and anassignment, and whose value again is a value in f0; 1g. Using this meaningfunction we shall, in stricy analogy, de�ne tautologies of First Order Logic,satis�ability and logical consequence. After the introduction of these basicsemantic concepts we return for a visit to our museum of examples.We shall also introduce a notion of proof sequences for First Order Logicand show its completeness. As a consequence we shall also obtain a com-pactness theorem for First Order Logic. A new visit to our museum willyield surprising applications of the compactness theorem.

564.1 Vocabularies and StructuresVocabularies are sets of relation symbols, function symbols and constantsymbols. Like in natural language, vocabularies for �rst order logic arethe building blocks of �rst order languages which are subject to variousinterpretations. These interpretations are called �rst order structures.4.1.1 Vocabularies4.1.1: De�nition (The countable universal vocabulary)The countable universal vocabulary �! consists of the following:(i) For every natural number n and � we have a relation symbol Rn;�of arity n and identi�cation number �;(ii) For every natural number n and � we have a function symbol Fn;�of arity n and identi�cation number �;(iii) For every natural number � we have a constant symbol c�.We can also consider uncountable vocabularies �I over �nite arities for anarbitrary set I. In this case we change the de�nition above and request thatn be a natural number and � 2 I.4.1.2: De�nitions (Vocabularies)(i) A vocabulary is a subset of � � �!. We usually denote vocabularieswith the Greek letter � or with �x where x can be any symbol servingas an index.(ii) A vocabulary � is called �nite (empty) if it is a �nite (empty) subsetof �! .(iii) A vocabulary � is relational if it does not contain any function symbol.(iv) A function symbol (relation symbol) of arity one is called unary.Unary relation symbols are also called predicate symbols. A functionsymbol (relation symbol) of arity two is called binary. A functionsymbol (relation symbol) of arity three is called ternary. More gener-ally, a function symbol (relation symbol) of arity n is called n{ary.4.1.3: Examples(i) �1 = fR2;0g is a vocabulary which consists of one binary relationsymbol with identi�cation number 0. �1 is relational and �nite.

57(ii) �arith = fc0; c1; F2;0; F2;1; R2;0g consists of two constant symbols,two binary function symbols and one binary relation symbol. �arithis �nite but not relational. Usually F2;0 stands for addition, F2;1for multiplication and R2;0 for an order relation, so we shall of-ten write, for simplicity, but contrary to our convention, �arith =fc0; c1; F+; F�; R<g.(iii) As an example of an uncountable vocabulary, let �real be �arith[fcr :r 2 Rg, i.e. we add to �arith a constant symbol cr for every realnumber r 2 R. Note that here the vocabulary is just a set, and theproblem of giving its elements constructive names is disregarded.4.1.2 Interpretations of VocabulariesNames in natural language are given meaning by associating with themobjects or concepts. The symbols in our vocabularies are given meaningby associating with them sets.4.1.4: De�nition (�{structures)Let Var be a dummy symbol, later to be used as the name of the set ofvariables. Let A be any set and let A be a function from fVarg [� intoA [Sn2N }(An) such that(i) A(Var) = A;(ii) For every constant symbol c� 2 � A(c�) 2 A;(iii) For every relation symbol Rn;� 2 � A(Rn;�) � An;(iv) For every function symbol Fn;� 2 � A(Fn;�) is a function from Aninto A.A is called the universe of A. We say also that A is a � -structure over theuniverse A.4.1.5: Examples(i) Let � = ;. Then a � -structure A over a universe A is just the set A.(ii) Let � = �arith. Let N be the � -structure with N (Var) = N and with(ii.a) N (c0) = 0, N (c1) = 1,(ii.b) N (F2;0)(n;m) = n+m,(ii.c) N (F2;1)(n;m) = n �m,(ii.d) (n;m) 2 N (R2;0) i� n � m.

58 N is called the (standard) Arithmetic Structure of the Natural Num-bers.(iii) Again, let � = �arith. Let Z be the � -structure with Z(Var) = Z, theintegers, and with(iii.a) Z(c0) = 0, Z(c1) = 1,(iii.b) Z(F2;0)(n;m) = n+m,(iii.c) Z(F2;1)(n;m) = n �m,(iii.d) (n;m) 2 Z(R2;0) i� n � m.Z is called the Arithmetic Structure of the Integers. More examplesare discussed in detail in subsection 4.2.4.1.3 Isomorphisms and Substructures �We now introduce a notion of indistinguishability of structures called iso-morphism of � -structures. The underlying idea behind this notion is thatthe nature of the elements of the universe of a � -structure is irrelevant tothe structure. What matters are the relations between the elements, andthe behaviour of the functions. When dealing with data structures in com-puting, the same approach is followed. If a programming language knowsof natural numbers, integers, reals, stacks, lists, then those structures aredetermined by some behavioural description which does not depend on theparticular implementation of the data structure in the assembly languageof the implementation.4.1.6: De�nitionLet A be a � -structure and X be a subset of the universe A = A(Var) ofA. X is � -closed if(i) For every c� 2 � we have that A(c�) 2 X and(ii) for every Fn;� 2 � and ~a = (a1; : : : ; an) 2 Xn we have that Fn;�(~a) 2X.4.1.7: ExerciseMake some examples of � -closed and not � -closed subsets of some � -structures A.4.1.8: De�nitionLet A and B be two � -structures. Let X be a subset of the universeA = A(Var) of A and Y be a subset of the universe B = B(Var) ofB. Furthermore let f : X 7! Y be a function, which is 1{1 and onto.

59(i) f is a partial isomorphism with domain X and range Y if(i.a) X is � -closed;(i.b) For every c� 2 � we have that f(A(c�)) = B(c�);(i.c) for every Fn;� 2 � and ~a = (a1; : : : ; an) 2 Xn we have thatf(A(Fn;�)(~a)) = B(Fn;�)(f(a1); : : : ; f(an));(i.d) for every Rn;� 2 � and every ~a = (a1; : : : ; an) 2 Xn we havethat ~a 2 A(Rn;�) i� (f(a1); : : : ; f(an)) 2 B(Rn;�).(ii) f is an isomorphism between the � -structures A and B if f is a partialisomorphism with domain A(Var) and range B(Var).(iii) Two � -structures A and B are isomorphic if there exists an isomor-phism f between A and B. In this case we write A ' B.(iv) f is an automorphism of the � -structure A if f is a partial isomor-phism with domain A(Var) and range A(Var).(v) f is an embedding of the � -structure A into the � -structure B if f isa partial isomorphism with domain A(Var) and range Y � B(Var).In this case we write A vf B.(vi) A is embeddable into B if there exists an f such that A vf B. Inthis case we write A v B.4.1.9: Proposition (Exercise)The isomorphism relation between � -structures is an equivalence relation.More precisely, let A;B; C be three � -structures. Then(i) A ' A;(ii) If A ' B then B ' A;(iii) If A ' B and B ' C then A ' C.4.1.10: De�nition (Substructures)Let A be a �{structure.(i) We say that a �{structure B is a substructure of A, or that A is anextension of B, and we write B � A, if(i.a) B(Var) � A(Var);(i.b) B is �{closed;(i.c) for every n{ary relation symbol R 2 � B(R) = A(R)\B(Var)n.

60(ii) Let B � A(Var) be �{closed. Let B be the unique substructure of Awith B(Var) = B. We say that B is induced by B on A.(iii) Let Bi; i 2 I be a family of substructures of A. We denote by Ti2I Bithe unique substructure on A induced by X = Ti2I Bi(Var), providedX is not empty.4.1.11: Exercise(i) B is a substructure of A i� B(Var) � A(Var) and the identityfunction 1B : B(Var) 7! A(Var) is an embedding of B into the� -structure A.(ii) Prove the uniqueness claims in the above de�nition, i.e. let B1;B2 betwo substructures of A with B1(Var) = B2(Var) then B1 = B2.(iii) Show that if B � A then B v A.(iv) Find two �{structures A and B such that B v A but not B � A.4.1.12: Proposition (Exercise)The substructure relation between �{structures is a partial order on theclass of �{structures. The embedding relation is only transitive. In otherwords, let A;B and C be � -structures.(i) If A � B and B � A then A = B.(ii) If A � B and B � C then A � C.(iii) If A v B and B v C then A v C.(iv) If, additionally, A or B is �nite, then If A v B and B v A thenA ' B.4.1.13: De�nition(i) Let A be a �{structure. A is minimal if A has no proper substructure,i.e. for every substructure B of A we have that B = A.(ii) Let A be a �{structure and X � A(Var). A is minimal over X if Ahas no proper substructure containing X, i.e. for every substructureB with X � B(Var) of A we have that B = A.4.1.14: ExerciseLet B be a �{structure and A be a substructure of B. Show that the followingare equivalent:

61(i) A is minimal;(ii) A is minimal over ;;(iii) A = TfC : C � Bg;(iv) For every X � A(Var) which is �{closed, X = A(Var).4.1.15: Proposition{ExerciseLet A be a �{structure and X � A(Var) and X 6= ;. Show that there is aunique substructure BX of A which is minimal over X.4.2 A Museum of StructuresIn this section we list some examples, which are useful to train our imagi-nation.4.2.1: De�nition (Expansions and reducts)Let � be a vocabulary and �1 � � . Let A be a �{structure and A1 the �1{structure de�ned by A1(Var) = A(Var) and for every relation, functionand constant symbol X 2 �1 A1(X) = A(X). In this situation we say thatA is a �{expansion of A1 or that A1 is a �1{reduct of A.4.2.1 Structures for ArithmeticLet �arith be the vocabulary fF+; F�; R<; c0; c1g consisting of two binaryfunction symbols, one binary relation symbol and two constant symbols.We have already de�ned two �arith-strcutures N and Z, the arithmeticstructure of the natural numbers and of the integers, cf. 4.1.5.4.2.2: Exercise(i) Show that N is a minimal �arith{structure. Determine the vocabular-ies � � �arith such that the �{reduct of N is still minimal and thosesuch that not. In the latter case exhibit some proper substructures.(ii) Let N0 be the reduct of N to the vocabulary �arith n fc1g. Is N0 aminimal structure ? If not, exhibit some substructures.(iii) Show that N is a substructure of Z.(iv) Are there any structures A such that N � A � Z ?4.2.3: De�nition (The Arithmetic Structure of the Real Numbers)

62(i) The structure R is the �arith{structure given byR(Var) = R, the real numbers,R(F+) the usual addition on the real numbers,R(F�) the usual multiplication on the real numbers,R(R<) the usual linear order on the real numbers,R(c0) = 0, R(c1) = 1.(ii) Let �Arith be the vocabulary fF+; F�; R<; c0; c1; F�; Fdivg withF�; Fdiv both unary function symbols. We expand R to a �Arith-structure Rinv by de�ningRinv(F�)(a) = �a andRinv(Fdiv)(a) = a�1 for a 6= 0 and Rinv(Fdiv)(0) = 0.4.2.4: Exercise(i) Show that N v R. Why is it not true that N v Rinv.(ii) Determine the minimal substructures of R and Rinv.(iii) Let I � R be the set of irrational numbers. Determine the substruc-tures of R and Rinv which are minimal over I.4.2.5: De�nition (The Arithmetic Structure of the Rational Num-bers)(i) The structure Q is the �arith{structure given byQ(Var) = Q, the rational numbers,Q(F+) the usual addition on the rational numbers,Q(F�) the usual multiplication on the rational numbers,Q(R<) the usual linear order on the rational numbers,Q(c0) = 0, Q(c1) = 1.(ii) For �Arith we expand Q to a �Arith-structure Qinv by de�ningQinv(F�)(a) = �a andQinv(Fdiv)(a) = a�1 for a 6= 0 and Qinv(Fdiv)(0) = 0.4.2.6: Exercise(i) Show that N v Q. Why is it not true that N v Qinv.(ii) Show that both Q v R and Qinv v Rinv.(iii) Determine whether N ' Q and Q ' R.(iv) Determine the minimal substructures of Q and Qinv.

63(v) Determine the vocabularies � � �Arith such that the �{reduct of Q isstill minimal and those such that not. In the latter case exhibit theminimal substructures.4.2.7: De�nition (The Powerset Structures)Let A be a set. The structure P(A) is the �arith{structure given byP(A)(Var) = }(A), the subsets of A;P(A)(F+) the usual union of two sets,P(A)(F�) the usual intersection of two sets,P(A)(R<) the usual inclusion relation between sets,P(A)(c0) = ;, P(A)(c1) = A.4.2.8: Exercise(i) Determine the minimal substructures of P(A) for various choices ofA.(ii) Let X = fA1; : : : ; Akg be a �nite partition of a a set A. Determinethe minimal substrcuture of P(A) over X.Let �field � �arith be the vocabulary fF+; F�; c0; c1g and �Field � �Arith bethe vocabulary fF+; F�; c0; c1; F�; Fdivg.4.2.9: De�nition(i) The structure C is the �field{structure given byC(Var) = C, the complex numbers,C(F+) the usual addition on the complex numbers,C(F�) the usual multiplication on the complex numbers,C(c0) = 0, C(c1) = 1.(ii) For �Field we expand C to a �Field-structure Cinv by de�ningCinv(F�)(a) = �a andCinv(Fdiv)(a) = a�1 for a 6= 0 and Cinv(Fdiv)(0) = 0.(iii) Let Rfield be the �field{reduct of R and Let RField be the �Field{reduct of Rinv.4.2.2 Graphs and OrdersGraphs are usually represented as < V;E > where V is any set called theset of vertices and E � V 2 is called the set of directed edges. To describegraphs as structures in our sense, let �graph be the vocabulary consistingof one binary relation symbol RE .4.2.10: De�nition (Graphs and Orders)

64(i) A directed graph is a �graph{structure G with G(Var) = V the set ofvertices, G(RE) = E with E � V 2 the set of edges.(ii) A undirected graph is a �graph{structure G with G(Var) = V theset of vertices, G(RE) = E with E � V 2 the set of edges with theproperty that for every a; b 2 V ha; bi 2 E i� hb; ai 2 E.(iii) A graph (directed or undirected) G is �nite if V is �nite.(iv) A directed graph is a partial order if the relation E is transitive, i.e.ha; bi 2 E and hb; ci 2 E imply that ha; ci 2 E, and if ha; bi 2 E andhb; ai 2 E imply that a = b.(v) A partial order is said to be total (or linear) if additionally we havethat for every a; b 2 V either ha; bi 2 E or hb; ai 2 E.4.2.11: ExerciseDraw some directed graphs by representing the set V as points on a pieceof paper and connecting two points a; b 2 V with an arrow from a to bi� ha; bi 2 E. Draw some undirected graphs similarly but connecting twopoints a; b 2 V with a line between a and b i� ha; bi 2 E.Similarly we can model labelled graphs and relational data bases.4.2.3 Words and Sets of Words as StructuresLet �word be the vocabulary consisting of one binary relation symbol R<and one unary relation symbol RU .4.2.12: De�nition (One word as a structure)(i) A word of length n is a �word{structure W withW(Var) = f1; 2; : : :; ng,W(R<) the natural order andW(RU) � W(Var).We can visualize words over the letters a; b as follows: the k-th letterof the word is a i� k 2 W(RU).(ii) Let w 2 fa; bg� be a word of length n. Let Ww be the �word{strcuturede�ned byWw(Var) = f1; 2; : : : ; ng,Ww(R<) the natural order andWw(RU) � W(Var) given by k 2 Ww(RU) i� the kth letter in w isa.4.2.13: De�nition (The set of words A� as a structure)Let �sg be the vocabulary consisting of a binary function symbol F� and aconstant symbol c0. Let A be a set and A� be the set of �nite words over

65A. We denote by W(A) the �sg{structure de�ned byW(A)(Var) = A�a,W(A)(F�)(x; y) = x � y andW(A)(c0) = �, the empty word.Let �WFF = fF_; F^; F!; F:; Rj=; Rtaut; ctrue; cfalseg with F_; F^; F!binary function symbols, F: a unary function symbol, Rj= a binary andRtaut a unary relation symbol and ctrue; cfalse constant symbols.4.2.14: De�nition (WFF as a structure)Let WFF be the �WFF {structure de�ned byWFF (Var) =WFF,WFF (F_)(�;) = (� _),WFF (F^)(�;) = (� ^),WFF (F!)(�;) = (�!),WFF (F:)(�) = :�,WFF (cfalse) = F, WFF (ctrue) = T,WFF (Rtaut) is the set of tautologies andh�; i 2 WFF(Rj=) i� � j= .4.2.4 Data Structures of Computer ScienceIn this subsection we show one way of modelling the familiar data structuresof Stacks, Queues and Lists as structures.4.2.15: De�nition (Stacks)Let �stacks be the vocabulary consisting of two unary function symbolsFpop; Ftop, one ternary relation symbol Rpush and a constant symbol cnew.Let A be a set. ST (A) is the �stacks{structure given byST (A)(Var) = A�;ST (A)(Fpop)(�) = � and for every a 2 A and w 2 A�;ST (A)(Fpop)(w � a) = w;ST (A)(Ftop)(�) = � and for every a 2 A and w 2 A�;ST (A)(Ftop)(w � a) = a;ST (A)(Rpush) � A��A�A� with hw; a; ui 2 ST (A)(Rpush) i� u = w �a;ST (A)(cnew) = �, the empty stack.4.2.16: De�nition (Queues)Let �queue be the vocabulary consisting of two unary function symbolsFget; Ffront, one ternary relation symbol Rput and a constant symbol cnew.Let A be a set. QU(A) is the �queue{structure given byQU(A)(Var) = A�;QU(A)(Fget)(�) = � and for every a 2 A and w 2 A�;QU(A)(Fget)(w � a) = w;QU(A)(Ffront)(�) = � and for every a 2 A and w 2 A�;QU(A)(Ffront)(w � a) = a;

66QU(A)(Rput) � A� � A� A� with hw; a; ui 2 QU(A)(Rput) i� u = a �w;QU(A)(cnew) = �, the empty queue.4.2.17: RemarkWhen dealing with data structures it is observed that both Rpush and Rputare interpreted as functions from A��A to A�. In our de�nition of struc-tures functions are always total functions on the universe. This is why wemodelled their graph as ternary relations.Recall from section 2.5 that CART (A) denotes the smallest set whichcontains A and is closed under the formation of ordered pairs.4.2.18: De�nition (Lists)Let �list be the vocabulary consisting of two unary function symbolsFhead; Ftail, one binary function symbol Fcons and a constant symbol c0.Let A be a set. LI(A) is the �list{structure given byLI(A)(Var) = CART (A) [f;g;LI(A)(Fhead)(x) = ; for every x 2 A [f;g;LI(A)(Fhead)(hx; yi) = x;LI(A)(Ftail)(x) = ; for every x 2 A [f;g;LI(A)(Ftail)(hx; yi) = y;LI(A)(Fcons)(x; y) = hx; yi;LI(A)(c0) = ;.4.2.19: Exercise (Trees)De�ne similarly trees4.2.5 2{StructuresIn this subsection we introduce some structures modelling sets. Let �setbe the vocabulary consisting of one binary relation symbol R2 and oneconstant symbol c0.4.2.20: De�nition (2{structures)(i) Let A be a set with ; 2 A. We denote by SET (A) the �set{structurewith SET (A)(Var) = A, SET (A)(c0) = ; and hx; yi 2 SET (A)(R2)i� x 2 y.(ii) For HF(A) we write HF(A) instead of SET (HF(A)). In particular,for HF we write HF instead of SET (HF).4.3 Syntax and Semantics of First Order LogicIn this section we de�ne the syntax and semantics of First Order Logicwith equality.

674.3.1 Syntax of First Order Logic4.3.1: De�nition (Logical Symbols)Logical symbols are elements of the set Logsymb = f^;_;!;:;8; 9;�g.Separator symbols are elements of the set Sepsymb = f(;); ; g.^ is read as `and', _ is read as `or', : is read as `not', 8 is read as `forall' and is called universal quanti�er, 9 is read as `there is' and is calledexistential quanti�er, � is read as `equals' and ! is read as `arrow'. Weavoid reading ! as `implies', as sometimes suggested in the literature.4.3.2: De�nition (Variables)For every i 2 N , vi is a variable. The set of all variables is denoted byVar. Note that Var is the dummy symbol we had introduced in de�nition4.1.4.Well{formed formulas of First Order Logic are strings containing sym-bols which are in Logsymb [Sepsymb [Var [�!.4.3.3: NotationWe shall use a vector notation for variables. Thus ~x stands for (x1; : : : ; xk)for some variables x1 = vj1 ; : : : ; xk = vjk .We �rst de�ne the set of � -terms. Terms are complex names of elements,built from variables, constant symbols and function symbols.4.3.4: De�nition (� -Terms)Let � be a vocabulary. The set Terms(�) of � -terms is de�ned inductivelyas follows:Basis:(i) Var � Terms(�).(ii) For every c� 2 � we have c� 2 Terms(�).Closure: If t1; : : : ; tn are terms and Fn;� 2 � then Fn;�(t1; : : : ; tn) 2Terms(�).The variables occuring in the string t 2 Terms(�) are called free vari-ables. We denote the set of free variables in t by Free(t).4.3.5: NotationWe shall also use vectorial notation for terms. For ~t = (t1; : : : ; tn) we thencan write instead of Fn;�(t1; : : : ; tn) simply Fn;�(~t).4.3.6: Theorem (Unique Readability for Terms, an Exercise)Let t 2 Term(�). Then one of the following is true:(i) t = c� for some unique c� 2 � ;(ii) t = vi for some unique vi 2 Var;

68(iii) There is a unique Fn;� 2 � and there are unique terms t1; : : : ; tn suchthat t = Fn;�(t1; : : : ; tn).Proof. The proof is very similar to the corresponding theorem for propo-sitional logic. Note however, that we have not bothered to de�ne the treeversion of terms. The various statements in the theorem do correspond tothe nodes of the tree, and the induction proceeds along those statements.4.3.7: De�nition (Atomic � -FOL-Formulas)(i) If t1 and t2 are � -Terms then (t1 � t2) is an atomic � -FOL-formula,and Free(t1 � t2) = Free(t1) [Free(t2)(ii) If Rj;� 2 � and t1; : : : ; tj are � -Terms then Rj;�(t1 : : : ; tj) is anatomic � -FOL-formula, and FreeRj;�(t1 : : : ; tj) = Free (t1) [� � � [Free (tj)4.3.8: De�nition (� -FOL-Formulas)(i) If � is an atomic � -FOL-formula then � is a � -FOL-formula.(ii) If � is a � -FOL-formula then :� is an � -FOL-formula, andFree ((:�)) = Free (�)(iii) If � and are � -FOL-formulas then (�_), (�^), (�!), are all� -FOL-formulas, and Free ((� _)) = Free ((� ^)) = Free ((�!)) = Free (�) [Free ().(iv) If � is a � -FOL-formula and x 2 Var is a variable then (8x�)and (9x�) are � -FOL-formulas, and Free ((8x�)) = Free ((9x�)) =Free (�) n fxg.We say also, that all of the occurences of x in � are bound by thequanti�er 8 or 9.We denote the set of � -FOL{formulas by FOL(�).4.3.9: RemarkAlthough our strict formation rules of FOL{formulas requires that the ap-plication of a quanti�er is followed by enclosing the resulting formula withparentheses, we shall later drop this convention. Hence, in liberalized form,

69if � is a � -FOL-formula and x 2 Var is a variable then 8x� and 9x� are� -FOL-formulas.4.3.10: De�nition (Sentences)If � is a � -FOL-formula and Free(�) = ;, then � is a � -FOL-sentence.We denote the set of � -FOL{sentences by SENT (�).4.3.11: De�nition (Subformulas)Let �; be � -FOL-formulas. is a subformula of � if there are words �; �such that � � � � = �4.3.12: Theorem (Unique Readability for Formulas, an Exercise)Let � be a � -formula. Then one of the following is true:(i) � is an atomic formula and begins with a relation symbol Rn;� 2 � .(ii) � is an atomic formula and begins with (followed by some term t.(iii) � begins with (8 and there is a unique variable vi and a unique sub-formula of � such that � = (8vi);(iv) � begins with (9 and there is a unique variable vi and a unique sub-formula of � such that � = (9vi);(v) � begins with : and there is a unique subformula of � such that� = : ;(vi) � begins with (and there are unique subformulas 1; 2 such thateither � = (1 _ 2) or � = (1 ^ 2); � = (1 ! 2).Proof. Use the Unique Readability for terms and proceed by inductionon the construction of the formula. We have not bothered to give the treepresentation of formulas, but propose it in the exercise below.4.3.13: RemarkThe reader should convince himself that the unique readability also holdsfor the liberalized notion of FOL{formulas.4.3.14: Theorem (Exercise:)(i) De�ne, analogously as for WFF and WFTF, the set of � -tree{formulas � � TFOF. The case of the quanti�ers requires some kindof additional marking of the variables to be bound which requires twokinds of links.(ii) De�ne writing and reading of formulas as the translations of � �TFOF into � �FOF and vice versa.

70(iii) Using the above de�nitions state and prove the Unique ReadabilityTheorem for First Order Logic.4.3.15: RemarkNote that the notion of � -FOL{formulas is context free. However, checkingwhether a variable vi is free (or bound) in some formula � is not contextfree but context sensitive.4.3.2 Semantics of First Order LogicSemantics is the solid foundation of meaning. In the case of First OrderLogic meaning depends on a given � -structure A and is assigned to � -formulas by means of a meaning function. This meaning function is builtin stages. We �rst give meaning to the variables by an assignment z whichmaps variables into the domain of the structure A. Then we extend thisassignment function to give meaning to � -terms. Finally we de�ne themeaning functionM with three arguments, which depends on a formula �,a structure A and an assignment z, and has the boolean values 0 or 1. Indetail this looks as follows:4.3.16: De�nition (Variable Assignment)(i) Given a � -structure A with domain A(Var) = A an assignment z isa mapping z : Var 7! A from the set of variables to elements of thedomain.(ii) We denote the set of all assignments z : Var 7! A by Ass(A).(iii) Let z1 and z2 be two assignments of Ass(A). We write z1 =i z2 if forevery j 6= i we have that z1(vj) = z2(vj).4.3.17: De�nitionGiven a � -structure A and an assignment z, the meaning function for � -terms is a function MT : Terms(�) � Ass(A) 7! A, de�ned inductively asfollows:Basis:(i) MT(vi; z) = z(vi);(ii) If c� 2 � then MT(c�; z) = c�;Closure:If Fn;� 2 � , t1; : : : ; tn and t are � -terms with t = Fn;�(t1; : : : ; tn) thenMT(t; z) = A(Fn;�)(MT(t1; z); : : : ;MT(tn; z)):

714.3.18: ExerciseWrite down some examples.4.3.19: De�nitionThe semantic for our languages is described by means of the meaning func-tion M (�;A; z) where � is a formula, A a structure and z an assignment.The meaning of the formulas is de�ned inductively as follows:Basis:(i) M ((t1 � t2);A; z) = 1 i� MT(t1; z) = MT(t2; z);(ii) M (Rj;�(t1 : : : ; tj);A; z) = 1 i� (MT(t1; z); : : : ;MT(tj ; z)) 2 A(Rj;�);Closure:(i) M (:�;A; z) = TT:(M (�;A; z))(ii) M ((� _);A; z) = TT_(M (�;A; z);M (;A; z));(iii) M ((� ^);A; z) = TT^(M (�;A; z);M (;A; z));(iv) M ((�!);A; z) = TT!(M (�;A; z);M (;A; z));(v) M ((9vi�);A; z) = 1 i� there exists z1 2 Ass(A) such that z =i z1and M (�;A; z1) = 1;(vi) M ((8vi�);A; z) = 1 if for every z1 2 Ass(A) such that z =i z1 wehave that M (�;A; z1) = 14.3.20: RemarkNote that this de�nition works because of the Unique Readability Theoremfor First Order Logic.4.3.21: PropositionIf � is a sentence, then M (�;A; z) is independent of z, i.e. for everyz; z1 2 Ass(A) M (�;A; z) = M (�;A; z1)The next theorem states that isomorphic � -structures can not be dis-tinguished by � -formulas. In other words, the meaning functions MT andM are not sensitive to change of structures by isomorphic copies.4.3.22: Theorem (The Isomorphisms Property)Let A;B be two � -structures, X � A(Var) and Y � B(Var). Letf : X 7! Y be a partial isomorphism with domain X and range Y . Letz : Var 7! X be an assignment and z1 be the assignment de�ned by z1(vi) =f(z(vi)).(i) Let t be a � -term. Then f(MT (t;A; z)) = MT (t;B; z1).(ii) Let � be a � -formula. Then M (�;A; z) = M (�;B; z1).

724.4 Basic Semantic ConceptsIn this section we present the basic semantic concepts such as logical con-sequence, logical equivalence, satis�ability and tautologies for �rst orderlogic. As particular examples and applications of the notion of logicalequivalence we study the e�ect of substitution of subformulas and somenormal forms for �rst order logic.4.4.1 Validity, Logical Equivalence and Logical Consequence4.4.1: De�nitionLet � be a set of � -formulas and � and be two � -formulas.(i) Let A be a � -structure and z be an assignment. We extend the mean-ing function for formulas to sets of formulas by setting M (�;A; z) =1 i� for every � 2 � we have that M (�;A; z) = 1.(ii) We say that � is a logical consequence of �, and we write � j=�, if for every � -structure A and every assignment z such thatM (�;A; z) = 1 we have also that M (�;A; z) = 1. If � = ; wewrite simply j= � instead of ; j= �. If � = f g is a singleton wewrite, by abuse of notation, also j= � instead of f g j= �.(iii) Similarly we write � j= �1 if � j= � for every � 2 �1.(iv) We say that � and are logically equivalent, and we write � � , if� j= and if j= �.(v) � is a tautology (or valid) if it is a consequence of the empty set, i.e.j= �.(vi) � is satis�able if there is a � -structure A and an assignment z suchthat M (�;A; z) = 14.4.2: NotationLet �;�1 be sets of � -formulas, A be a � -structure and z be an assignment.(i) We write A; z j= �1 for M (�1;A; z) = 1 and A j= �1 if for everyassignment z M (�1;A; z) = 1.(ii) We write � j= �1 if for every A with A j= � we have also A j= �1.(iii) Note that this notation is consistent with � j= �1 de�ned above vialogical consequence.4.4.3: Proposition(i) � is a tautology i� :� is not satis�able.

73(ii) � j= (�!) i� � [f�g j= .(iii) � j= (� ^ :�) i� � is not satis�able.(iv) � is not satis�able i� for every � we have that � j= �.(v) � � i� both j= (�!) and j= (! �)4.4.4: Proposition (Some Tautologies and Equivalences)(i) Let B(p1; : : : ; pn) be a propositional formula in WFF which is apropositional tautology. Let �1; : : : ; �n be � -formulas. Let � be the � -formula B(�1; : : : ; �n) obtained from B by replacing each occurrenceof the propositional variable pi by �i. Then � is a tautology (among�rst order formulas).(ii) Let �1; 1 and 2 be � -formulas such that 1 is a subformula of �1and 1 � 2. Let �2 be the formula obtained from �1 by replacing 1by 2. Then �1 � �2.Proof. (i) First we prove by induction on the structure of B thatM (�;A; z) = MPL(B; z1) where z1 is the propositional assignment de�nedby z1(pi) = M (�i;A; z). Then we use that B is a propositional tautologyto conclude that � is a �rst order tautology.(ii) Let �1 = � � 1 � �. We proceed by backward induction on � andinduction on � and use the Unique Readability Theorem.4.4.5: Proposition (Moving quanti�ers in formulas)Let �; be � -formulas. Then(i) 8vi(� ^) � (8vi� ^ 8vi);(ii) 9vi(� _) � (9vi� _ 9vi);(iii) If vi does not occur free in then (8vi� ^) � 8vi(� ^) and(8vi� _) � 8vi(� _);(iv) If vi does not occur free in then (9vi� _) � 9vi(� _) and(9vi� ^) � 9vi(� ^);(v) :8vi� � 9vi:� and :9vi� � 8vi:�;4.4.6: De�nition (Substitution of Terms)Let s : Var 7! Term(�) be a function. Let t 2 Term(�) and � be a� -formula. We de�ne st(t; s) and subst(�; s) inductively in two stages.

74(i) st(c�; s) = c�;(ii) st(vi; s) = s(vi);(iii) st(Fn;�(t1; : : : ; tn); s) = Fn;�(st(t1; s); : : : ; st(tn; s));(iv) subst((t1 � t2); s) = st(t1; s) � st(t2; s);(v) subst(Rn;�(t1; : : : ; tn); s) = Rn;�(st(t1; s); : : : ; st(tn; s));(vi) subst(:�; s) = :subst(�; s);(vii) subst((� ^); s) = (subst(�; s) ^ subst(; s));(viii) subst((� _); s) = (subst(�; s) _ subst(; s));(ix) subst((�!); s) = (subst(�; s)! subst(; s));(x) subst(8vi�; s) = 8visubst(�; s1) with s1(vi) = vi and s1(vj) = s(vj)for all i 6= j.(xi) subst(9vi�; s) = 9visubst(�; s1) with s1(vi) = vi and s1(vj) = s(vj)for all i 6= j.4.4.7: Proposition (Renaming of Bound Variables)Let s : Var 7! Var be a function and � a � -formula. Assume that s(vj)does not occur at all in � and s(vi) = vi for every i 6= j. Then(i) 8vj� � 8s(vj)subst(�; s) and(ii) 9vj� � 9s(vj)subst(�; s).Proof. The proof uses the fact that M (�;A; z) is not dependent onz(s(vj)).The condition that s(vj) does not occur at all in � in proposition 4.4.7is not the weakest possible.4.4.8: ExerciseAnalyse what other conditions on the occurrence of s(vj) in � su�ce forthe conclusion of proposition 4.4.7 to remain true. Is the condition thats(vj) is not in Free(�) su�cient ?Note that in the proof rules in section 4.6 additional conditions onsubstitutions are imposed.4.4.9: Proposition (Replacing equivalent subformulas)Let � be a formula with subformula �, i.e. � = � � � � �. Let �1 be aformula such that � � �1 and Free(theta) = Free(theta1). Then

75(i) �1 = � � �1 � � is a well formed formula and(ii) � � �1.Proof. Use unique readability and induction on the structure of �.4.4.2 Normal FormsFirst order formulas are built by using the boolean operations and quan-ti�cation in arbitrary order. The purpose of Normal Forms is to restrictthe order of these building steps, similar as in the case of CNF for propo-sitional logic. The most important normal form for �rst order logic is thePrenex Normal Form. The word "prenex" refers to "pre" (latin: before)and "nexus" (latin: bound) and is used in logic to indicate that all the vari-able binding appears in the formula before any other logical operations.4.4.10: De�nition (Quanti�er free formulas)The set QF(�) of quanti�er free � -formulas is built inductively as follows:Basis: Atomic � -formulas are quanti�er free.Closure: If �; 2 QF(�) then so are :�; (�^); (� _); (�!).4.4.11: De�nition (Prenex Normal Form)The set PNF(�) of � -formulas in prenex normal form is built inductivelyas follows:Basis: QF(�) � PNF(�).Closure: If � 2 PNF(�) then so are 8vi� and 9vi�.4.4.12: Theorem (Prenex Normal Form Theorem)For every � -formula � there is a � -formula such that:(i) � � ;(ii) 2 PNF(�) and(iii) � and have the same free variables.(iv) Furthermore the length of is linear in the length of �.Proof. The proof is by induction on �. If � 2 PNF(�) there is nothingto prove. In the other cases we use the proposition on moving quanti�ers4.4.5, renaming bound variables 4.4.7 and replacing equivalent subformulas4.4.9.4.4.13: De�nition (Universal and Existential Formulas)A �{formula � in PNF(�) which has only universal (existential) quanti-�ers is called a universal (existential) formula.

764.4.3 Models and Theories *In this section we introduce some de�nitions useful in the discussion ofexamples.4.4.14: De�nition (De�nable Classes of Models)(i) We denote by Str(�) the class of all �{structures.(ii) For every set of �{sentences � we denote byMOD(�) = fA 2 Str(�) : for every assignment z M (�;A; z) = 1gMOD(�) is called the class of all models of �.(iii) Let K � Str(�). K is called (�nitely) de�nable if there is a (�nite)set � of �{sentences such that K =MOD(�).Note that A 2MOD(�) is equivalent to A j= �.4.4.15: De�nition (Elementary equivalence and elementary sub-structures)Let A;B 2 Str(�).(i) A;B are said to be elementarily equivalent, and we write A � B, iffor every � 2 SENT (�) A j= � i� B j= �.(ii) A are said to be elementarily substructure of B, and we write A � B,if A is a substructure of B and for every assignment z : Var !A(Var) and for every � 2 FOL(�) A; z j= � i� B; z j= �.4.5 Visit to the Museum: The Meaning Function andDe�nabilityIn this section we discuss some examples of what formulas can say. Learninghow to read and understand the language of First Order Logic is essentialfor the intuitive grasp of logic and its mathematical treatment. But itshould not be confused with reasoning about First Order Logic (and otherlogics). The former is like using a language to talk and communicate, thelatter is like reasoning about such languages. And as the communication ofreasoning about languages is done in language, so the reasoning about logicis done in mathematical language which again can be modelled in logic.

774.5.1 The Logical LieuLogical formulas say something about the structures in which they hold. Ifthe �{formula � has no free variables and A is a �{structure, the value ofM (�;A; z) isIf the �{formula �(v1; : : : ; vn) has exactly v1; : : : ; vn as its free variablesand A is a �{structure, the value ofM (�;A; z) depends on z(v1); : : : ; z(vn)and de�nes a subset of A(Var)n, similarly to x2 + y2 + z2 = 1, whichde�nes the unit circle in R3. The latter is called in elemntary geometrythe `geometrical lieu' de�ned by x2+y2+z2 = 1. In analogy to this we nowintroduce the `logical lieu' de�ned by a �rst order formula in a structure.4.5.1: De�nition (Logical Lieu)Let �(v1; : : : ; vn) a �{formula with exactly v1; : : : ; vn as its free variablesand A be a �{structure.(i) We denote by �(A) the setfha1; : : : ; ani 2 A(Var)n :there is a z with M (�;A; z) = 1 and z(v1) = a1; : : : ; z(vn) = ang:(ii) Let X � A(Var)n. We say that � de�nes the set X over A or thatX is the logical lieu de�ned by � over A if X = �(A).The rest of this section is devoted to examples.4.5.2 Ordered FieldsRecall that �arith is the vocabulary fF+; F�; R<; c0; c1g and R (Q;N) isthe Arithmetic Structure of the Real (Rational, Natural) Numbers and Zof the Integers. The structures R and Q are what is called a �eld, i.e.addition and multiplication satisfy the following (set theoretic) properties:Commutativity x+ y = y + x; x � y = y � x;Associativity x+ (y + z) = (x+ y) + z; x � (y � z) = (x � y) � z;Neutral Element 0 + x = x; 1 � x = x; 0 � x = 0;Inverse Element For every x there is a y such that x+ y = 0,for every x 6= 0 there is a y such that x � y = 1;Distributivity x � (y + z) = (x � y) + (x � z).4.5.2: Exercise

78(i) Translate the above properties into �arith-formulas and verify thatyour translation is satis�ed both in R and Q.(ii) Which of the properties have a translation which is not in PrenexNormal Form ? Can you �nd a translation which is in Prenex NormalForm?(iii) Which of the above properties are not satis�ed in N ?(iv) Which of the above properties are not satis�ed in Z ?The structures R and Q are both what is called an ordered �eld, i.e.addition and multiplication satisfy the following additional (set theoretic)properties:Asymmetry If x < y then not y < x;Transitivity if x < y and y < z then x < z;Linearity for every x; y either x < y or y < x or x = y;Monotonicity If x < y then for every z also x+ z < y + z;if 0 < x and 0 < y then also 0 < x � y.4.5.3: Exercise(i) Translate the above properties into �arith-formulas and verify thatyour translation is satis�ed both in R and Q.(ii) Which of the properties have a translation which is not in PrenexNormal Form ? Can you �nd a translation which is in Prenex NormalForm?(iii) Which of the above properties are not satis�ed in N ?(iv) Which of the above properties are not satis�ed in Z ?4.5.4: Exercise(i) Find a �field{formula �pos(v1) with one free variable (and withoutR<) which de�nes the positive elements of R. (Hint: The squares)(ii) Find a �field{formula �ord(v1; v2) with two free variables (and withoutR<) which de�nes the linear order on R. (Hint: Use �pos)(iii) Determine the logical lieu of �pos and �ord in Q;Z;N .

794.5.3 The Natural NumbersLet �peano be the vocabulary fF+; F�; S; c0; c1g consisting of two binaryfunction symbols, one unary function symbol and two constant symbols.Let Npeano be the �peano{structure de�ned as follows: Npeano(Var) = N,Npeano(F+) the usual addition on the natural numbers,Npeano(F�) the usual multiplication on the natural numbers,Npeano(Fsucc) the usual successor function (+1) on the natural numbers,Npeano(c0) = 0, Npeano(c1) = 1.4.5.5: Exercise(i) Find a formula � 2 FOL(�peano) which de�nes the usual order of thenatural numbers on Npeano.(ii) Find a formula � 2 FOL(�arith) which de�nes the successor functionof the natural numbers on N .(iii) Show that for every formula � 2 FOL(�peano) there is formula 2 FOL(�arith) with the same free variables such that for every as-signment z : Var!N we have that M (�;Npeano; z) = M (;N ; z).4.5.6: Exercise(i) Find a formula � 2 FOL(�peano) with two free variables which de�nesthe usual divisibility relation `m divides n'.(ii) Find a formula � 2 FOL(�arith) with one free variable which de�nesthe set of primes.(iii) Find a formula � 2 FOL(�peano) without free variables which ex-presses that there are in�nitely many primes in N.The natural numbers satisfy the Induction Principle:For every X � N such that 0 2 X and whenever n 2 X the n + 1 2 X,then X = N. We shall see in section 4.7 that the Induction Principle is notexpressible in �rst order logic. The best we can do in �rst order logic indescribing the Induction Principle consists of writing down each instancefor it for which X is de�nable as a formula.Let �(v0; v1; : : : ; vk) be a �peano formula with v0; v1; : : : ; vk as its freevariables. Let Ind� be the following formula:8v1; : : : ; 8vk[(�(c0; v1; : : : ; vk) ^ (8v0�(v0; v1; : : : ; vk)!�(Fsucc(v0); v1; : : : ; vk)))! 8v0�(v0; v1; : : : ; vk)]:

804.5.7: Exercise(i) Verify that Npeano j= Ind� for every �peano formula.(ii) Let Ind+� be the following formula:8v1; : : : ; 8vk[(�(c0; v1; : : : ; vk) ^ (8v0�(v0; v1; : : : ; vk)!�(F+(v0; c1); v1; : : : ; vk)))! 8v0�(v0; v1; : : : ; vk)]:Verify that Npeano j= Ind+� for every �peano formula.4.5.4 Graphs and OrdersLet G =< V;E > be a graph.4.5.8: Exercise(i) Find a �graph-formula without free variables which says that there isa cycle of length k.(ii) Find a �graph-formula with two free variables which says that there isa path of length k between two elements x; y 2 V .(iii) Find a �graph-formula with one free variable which says that a vertexx 2 V has out{degree (in{degree) k.Let G =< V;E > be a linear order. Let a; b 2 V . We say that ais smaller (bigger) than b if ha; bi 2 E (hb; ai 2 E). a is a successor(predecessor) of b if a is the smallest (biggest) element bigger (smaller)than b. An element a is a �rst (last) element if there are no elements inV which are smaller (bigger) than a. G is discrete if every element of V iseither a �rst element, last element or both a successor and a predecessor.G is dense if between every two elements of V such that ha; bi 2 E there isc 2 V with ha; ci 2 E and hc; bi 2 E.4.5.9: ExerciseWrite �graph{formulas which de�ne the above concepts.4.5.5 Words and Sets of Words as StructuresLet WFF the structure of well formed propositional formulas as de�nedin section 4.2.4.5.10: Exercise

81(i) For every of the axioms A1; A2; A3 of Propositional Logic �nd a for-mula �A1 (�A2; �A3) with two (three, one) free variables which de�nesthe instances of this axiom over WFF .(ii) Use the above to �nd sentences which say that the axioms are sound.(iii) Find, analogously, a sentence �MP which expresses that Modus Po-nens is sound.4.5.6 Data Structures of Computer ScienceStacks and Queues di�er only in as much as what one puts in last into astack gets out �rst (LIFO), whereas in queues what puts in �rst gets out�rst as well (FIFO).4.5.11: Exercise(i) Find a �stack{formula �atom with one free variable which de�nes theset A in ST (A).(ii) Find a �queue{formula atom with one free variable which de�nes theset A in QU(A).(iii) Find formulas which de�ne the set of stacks (queues) of depth k, forevery k 2N.(iv) De�ne a similar formula for lists which de�nes the set of atoms.Let �LIFO be the formula�LIFO = 8v18v28v3((�atom(v2) ^Rpush(v1; v2; v3))! (v1 � Fpop(v3)))and let �FIFO be the formula8v18v28v38v4(�FIFO:1 ^ �FIFO:2)and �FIFO:1 =((�atom(v2) ^Rput(cnew; v2; v3))! (cnew � Fget(v3)))�FIFO:2 =((�atom(v2)^:(v1 � cnew)^Rput(v1; v2; v3)^Rput(Fget(v1); v2; v4))! (v4 � Fget(v3))):Note that we have ommitted some parentheses for the sake of readibility.

824.5.12: ExerciseDiscuss to what extent the formulas �LIFO and �FIFO are related to theLIFO (FIFO) property of stacks (queues).Let 1; 2; 3 be the following �list-formulas 1 = 9v3(Rcons(v1; v2; v3) ^ (Ftail(v3) � v2)); 2 = 9v3(Rcons(v1; v2; v3) ^ (Fhead(v3) � v1)); 3 = 8v18v2(1 ^ 2):4.5.13: ExerciseDiscuss the logical lieus de�ned by 1; 2 and 3 in the structure LI(A)for various sets A.4.5.7 2{Structures4.5.14: ExerciseFormulate the laws and principles of sets from sections 2.1{2.4 as �2{formulas.4.5.8 SubstructuresRecall the de�nition of universal and existential sentences from de�nition4.4.13 and prove the following4.5.15: PropositionLet A and B be �{structures and let A � B. Let � be a �{sentence.(i) If � is universal and B j= � then A j= �(ii) If � is existential and A j= � then B j= �4.5.16: ExerciseLet �dense be the �graph-sentence which says that a linear order is dense.Show that �dense is neither equivalent to some universal nor to some exis-tential formula.4.5.17: ExerciseLet �emptyset be the empty vocabulary and let A;B 2 Str(�emptyset. Showthe following:(i) If A is �nite, then A � B i� A(Var) and B(Var) have the samenumber of elements.(ii) If A is �nite, then A � B i� A(Var) = B(Var).

83(iii) Let A be in�nite and � 2 FOL(�emptyset). Show by induction on �that for every � there is a qunati�er free formula 2 FOL(�emptyset)with the same free variables as � such that for every assignmentz : Var!A(Var) we have that A; z j= � i� A; z j= .(iv) If A is in�nite, then A � B i� B is in�nite.(v) If A is in�nite, then A � B i� A(Var) � B(Var).Hint. For (iv) and (v) use (iii).4.6 Hilbert{style Deduction for First Order LogicIn this section we present the �rst deduction method for First Order Logic:Hilbert{style deduction (deduction sequences). In section 4.8 we shall seeanother deduction method, Resolution with Uni�cation. Hilbert{style de-duction models to some extent human reasoning as practized by formallytrained mathematicians. Resolution is more machine friendly and is ex-tremely popular in Automated Theorem Proving and Logic Programming.4.6.1 Hilbert-style Axioms and Inference RulesIn this section we want to characterize the notion of logical consequenceof First Order Logic syntactically. For simplicity we de�ne our deductionsequences only for formulas built with the connectives !, the logical con-stant F and the quanti�er 8. The remaining connectives and quanti�er areused as abbreviations (macros) according to the following list:(i) :� stands for �! F;(ii) (� _) stands for ((�! F)!);(iii) (� ^) stands for ((�! (! F))! F);(iv) 9vi� stands for :8vi:�;4.6.1: De�nition (The axioms)(i) Let B(p1; : : : ; pn) be a propositional formula in WFF!;F which is apropositional tautology. Let �1; : : : ; �n be � -formulas. Let � be the � -formula B(�1; : : : ; �n) obtained from B by replacing each occurrenceof the propositional variable pi by �i. Then � is an axiom.(ii) If � and are � -formulas, vi be a variable which does not occur freein �. Then(8vi(�!)! (�! 8vi)) is an axiom.

84(iii) If � is a � -formula, s : Var 7! Term(�) be a function with s(vi) = tand s(vj) = vj for every j 6= i, then (8vi�(vi) ! subst(�; s)) is anaxiom, provided that no variable vj (j 6= i) that occurs in t has abounded occurence in �.4.6.2: De�nition (Proof Sequences)Let � be a set of � -formulas and �1; : : : ; �n be � -formulas. We say that�1; : : : ; �n is a proof sequence over � if for each i � n one of the followingholds:(i) �i 2 �;(ii) �i is an axiom;(iii) (Modus ponens) There are k; l < i such that �l = (�k ! �i);(iv) (Generalization) There is k < i such that �k = (vl) and �i =8vmsubst((vl); s), provided that(iv.a) vl not free in any of the formulas of �,(iv.b) s : Var 7! Var is a function such that s(vl) = vm and s(vh) =vh for every h 6= l and vm does not occur at all in .We write � ` � if there is a proof sequence �1; : : : ; �n over some �0 � �such that �n = �.4.6.3: De�nition (Deducible formulas)Let � be a set of � -formulas. We de�ne the set Ded(�) by � 2 Ded(�) i�� ` �.4.6.4: Proposition (Soundness of Proof Sequences)If � 2 Ded(�) then � j= �.Proof:. For the case of the axioms obtained from tautologies of Proposi-tional Logic and for Modus Ponens the proof is the same as for Proposi-tional Logic. Axiom (ii) follows from proposition 4.4.5 on moving quanti-�ers and axiom (iii) from proposition 4.4.7 on substituting bound variables.We are left with the generalization rule (exercise).4.6.5: NotationLet �(vi) be a �{formula. We shall freely write �(vj) for subst(�(vi); s) withs(vi) = vj when ever it should be clear from the context what is meant.4.6.6: Exercise

85(i) Show that �(vi) 6` 8vi�(vi).(ii) Let � be a � -formula. Pick your favourite � and write it down ex-plicitely. Find a proof sequence for (8vi�(vi) ! 8vj�(vj)) for yourspeci�cally chosen � and vj not occurring in �.4.6.7: Examples (Exercise)Prove the following statements:(i) Ded(;) is a subset of the �rst order tautologies.(ii) Ded(fFg) = FOL(�) for every vocabulary � .(iii) Let � be in�nite and � 2 Ded(�). Then there is a �nite subset�0 � � such that � 2 Ded(�0).4.6.8: De�nitionWe say that a set of � -formulas � is inconsistent if � ` F. If � is notinconsistent, we say � is consistent.4.6.9: RemarkNote, by the soundness of proof sequences, that if � is inconsistent, then �is not satis�able.4.6.2 Manipulations of Proof SequencesThe following are useful properties for the manipulation of proof sequences.4.6.10: Proposition{ExerciseLet �0 � � be two sets of � -formulas and � be a � -formula.(i) If �0 ` � then � ` �;(ii) If �1; �2; : : : ; �n is a proof sequence over � then for each i � n wehave that � ` �i.(iii) If � ` � and � ` (�!) then � ` .(iv) If � ` (�! (� !)) and � ` (�! �) then � ` (�!).4.6.11: Proposition (Deduction Theorem)Let � be a set of � -formulas and �; be two � -formulas.� ` (�!) i� � [f�g ` .Proof:. (i) Assume � ` (�!). We have to prove that �[f�g ` . Byproposition 4.6.10 (i) above we have � [f�g ` (�!) and, using modusponens, � [f�g ` .

86(ii) Assume � [f�g ` .There are two cases:1. � ` without using �. As (! (� !)) is a tautology, we have,using Modus Ponens, � ` (�!).2. Otherwise, let �0 � � such that there is a proof sequence 1 : : : n over�0 [f�g for n = . We have to show that there is a proof sequence over�0 for (�!). This would imply � ` (�!). We proceede by inductionon n.Basis: n = 1. � 6` so the only possibility left is = �. In this case(�!) is a tautology and we conclude �0 ` (�!).Closure: If the last step in the proof sequence is justi�ed by an axiominstance or an hypothesis from �0 [f�g we proceed as in the �rst case orthe basis.If the last step is an application of Modus ponens then there are 1 � k; l � nso that l = (k !):By induction hypothesis �0 ` (�! k)and �0 ` (�! (k !)):As in the proof of the deduction theorem for Propositional Logic we con-clude �0 ` (�!):If the last step is an application of the generalization rule with k(vi); 1 �k � n and = n+1 = 8vj k(vj), we have by induction hypothesis�0 ` (�! k(vi)):Also vi is not free in � or any formula of �0 (otherwise the application ofthe rule would not have been legal). This allows us to derive8vi(�! k(vi))by generalization and then�0 ` (�! 8vi k(vi))using the axiom instance8vi(�! k(vj))! (�! 8vi k(vi))and Modus ponens. Now, remembering the tautology(8vi k(vi)! 8vj k(vj))

87we conclude �0 ` (�! 8vj k(vj)):4.6.12: Proposition{Exercise (Dychotomy Theorem)Let � be a set of � -formulas and �; be two � -formulas.If both � [f�g ` and � [f(�! F)g ` � then � ` .4.6.13: HintUse the Deduction Theorem.Proof sequences capture the essence of proofs and can be used for similarformulas in the following sense:4.6.14: ExerciseLet � � FOL(�), � 2 FOL(�) and s : Var ! Term(�) be a substitution.Prove that, if � ` �, thenfsubst(; s) : 2 �g ` subst(�; s):4.6.3 Completeness and CompactnessThe following shows that the method of proof sequences is su�ciently pow-erful to obtain all tautologies, or, more generally, all logical consequencesof a given set of formulas.4.6.15: Theorem (Completeness theorem for Deductions)Let � be a set of � -formulas and � be a � -formula.If � j= � then � ` �.The proof will be given in subsection 4.6.4.4.6.16: Corollary (Compactness Theorem)Let � be an in�nite set of � -formulas. � is satis�able i� every �nite subset�0 � � is satis�able.Proof:. By the completeness theorem above � is satis�able i� � is consis-tent. Clearly, if � is consistent, so is every �nite subset �0 � �. Conversely,assume � is inconsistent. By de�nition and example 4.6.7 (iii) there is a�nite subset �1 � � such that F 2 Ded(�1) and therefore �1 is a �niteinconsistent subset.As a �rst application of compactness we have4.6.17: Theorem (Finitely De�nable Classes)Let K � Str(�) and �K = Str(�) nK. The following are equivalent:

88(i) K is �nitely de�nable.(ii) �K is �nitely de�nable.(iii) Both K and �K are de�nable.Proof:. Exactly as the corresponding theorem for Propositional Logic.More applications of the compactness theorem may be found in the nextvisit to the museum, section 4.7.4.6.4 Proof of the Completeness TheoremThe proof of the completeness theorem 4.6.15 comes in several stages. We�rst observe that it su�ces to prove that � is satis�able i� � is consistent.In other words4.6.18: LemmaAssume that for every set of � -formulas �, � is satis�able i� � is consis-tent. Then for every set of � -formulas � and every �{formula � � j= � i�� ` �.Proof. Use the deduction theorem.Next we need a set theoretic lemma:4.6.19: LemmaLet � = Si2N �i with � i � �j for i � j. Let �i; i 2 N be a family of�i-formulas such that for each i 2N �i is consistent and �i � �i+1. Then� = S�i is consistent.Proof. � is consistent. For, otherwise, there is a �nite deduction sequenceshowing inconsistence over some �nite subset X � �. But then there is ani 2N with �i inconsistent.Next we introduce the notion of maximally consistent sets of formulas.4.6.20: De�nitionLet � be a set of �{formulas. � is maximally consistent if � is consistentand for every �{sentence � � 2 � or :� 2 �.4.6.21: LemmaLet � be a consistent set of �{sentences. Then there is a maximally con-sistent set of �{sentences �� with � � ��.

89Proof. Let f�ig be an enumeration of all �{sentences.Let �0 = �.Let �n+1 = �n [f�ng if it is consistent, and Let �n+1 = �n [f:�ngotherwise.Use the Deduction theorem to show that for each n 2N �n is consistent.Now let �� be the union of all the �n. �� is consistent by lemma 4.6.19.To show that �� is maximally consistent, let be a �{sentence. = �kfor some k 2 N. But then either or : is in �k+1 and therefore in ��.4.6.22: Examples(i) Let A be a � -structure and Th(A) = f� 2 FOL(�) : A j= �g. ThenTh(A) is maximally consistent. To see this we note �rst that Th(A)is satis�able (by A), and therefore consistent, by the soundness ofthe deduction rules. Now let � be a � -formula without free variables.Clearly, either A j= � or A j= :�. Therefore either � 2 Th(A) or:� 2 Th(A), which shows that Th(A) is maximally consistent.(ii) Let � be a consistent set of �{formulas such that for every two � -structures A, B with A j= � and B j= � we have that A � B, i.e forevery � -sentence � we have that A j= � i� B j= �. Then Ded(�) ismaximally consistent. (Exercise, similar to the above).4.6.23: De�nitionA constant �{term is a �{term without free variables.4.6.24: De�nitionLet � be a set of �{sentences. We say that � has enough witnesses iffor every �{formula �(vi) with vi the only free variable in � there is aconstant �{term t such that if 9vi�(vi) 2 � then �(t) 2 �. Here �(t) is anabbreviation for the result of substituting t for vi in �.4.6.25: LemmaLet � be a countable consistent set of �{sentences. Then there is a count-able vocabulary �+ and a countable consistent set of �+-sentences �+ whichhas enough witnesses.4.6.26: LemmaLet � be a countable consistent set of �{sentences. Then there is a count-able vocabulary �# and a a countable set of �#-sentences �# which hasenough witnesses and is maximally consistent.Proof:. Use lemma 4.6.21 and lemma 4.6.25.

904.6.27: LemmaLet � be a countable set of �{sentences not containing the equality symbol.If � has enough witnesses and is maximally consistent, then � is satis�able.The proof of the completeness theorem 4.6.15 now proceeds as follows.� Assume � is consistent.� Using, lemma 4.6.26 we can �nd �� with � � ��, such that �� ismaqximally consistent and has enough witnesses.� Using lemma 4.6.27 we conclude there is a ��{structure A with A j=��.� Regarding A as a �{structure we conclude that A j= �.4.6.5 The Case with EqualityWe have shown the completeness theorem only for formulas with equality.In this section we shall expand the deduction rules and the proof of thecompleteness theorem to formulas with equality.4.6.28: RemarkNot done in the course. To be completed.4.7 Visit to the Museum: Non{De�nability4.7.1 Finite Structures4.7.1: Exercise(i) Write down sentences �n over � = ; which say that there are at leastn di�erent elemnts.(ii) Let �inf = f�n : n 2Ng. Show that �inf is satis�able.(iii) Let � � SENT (�) for some not empty � . Assume that MOD(�)contains arbitrarily large �nite models. Show that �[�inf is �nitelysatis�able.4.7.2: ExerciseUse the previous exercise to show that(i) The class of �nite graphs is not de�nable.(ii) The class of �nite orders is not de�nable.(iii) The class of �nite �elds is not de�nable.

91Show the following4.7.3: PropositionLet K � Str(�) be a class of �nite structures. Show that the following areequivalent:(i) K is de�nable.(ii) K is �nitely de�nable.(iii) There is an n 2N such that every A 2 K has less than n elements.4.7.2 The Real NumbersRecall that �arith is the vocabulary fF+; F�; R<; c0; c1g consisting of twobinary function symbols, one binary relation symbol and two constant sym-bols and R as a �arith{structure is the Arithmetic Structure of the RealNumbers.We write n for 1 + : : :+ 1| {z }n . n represents the natural number n in R.We write tn for the term F+(c1F+(: : :+ F+(c1; c1) : : :)| {z }n�1 . tn is a term whoseinterpretation in R is the natural number n in R. Now R satis�es theArchimedean Property, i.e. for every x; y with 0 < x and 0 < y there is ann such that y < n � x.4.7.4: PropositionThere is no �arith-formula which expresses the Archimedean property. Inother words, for every set of �arith-formulas � such that R j= � there isa �arith-structure B with B j= � which does not satisfy the ArchimedeanProperty.Proof. We use the compactness theorem. Let c2 be a new constant symbol.Let � = ftn < c2 : n 2Ng. Let Th(R) = f� 2 SEN(�arith) : R j= �g.Claim: T = Th(R) [� is satis�able.Let �m = ftn < c2 : n < mg and Tm = Th(R) [�m. Let X be a�nite subset of T . Then there is an m such that X � Tm. We de�ne the�arith [fc2g{structure Rm as follows: All symbols of �arith are interpretedas for R. The constant c2 is interpreted as the interpretation of the termtm. Clearly,Rm j= Tm, soX is satis�able. Using the compactness theorem,we conclude that T is satis�able. So let B j= T . It is now easy to see, thatB does not satisfy the Archimedian Property.

924.7.3 The Natural NumbersRecall that the �arith{structure N is the Arithmetic Structure of the Nat-ural Numbers. The natural numbers satisfy the Induction Principle:Induction Principle For every X � N such that 0 2 X and whenevern 2 X the n+ 1 2 X, then X = N.We now show that the Induction Principle is not expressible in �rst orderlogic. More precisely4.7.5: PropositionThere is no �peano-formula which expresses the Induction Principle. Inother words, for every set of �peano-formulas � such that Npeano j= � thereis a �peano-structure B with B j= � which does not satisfy the InductionPrinciple.Proof. We use the compactness theorem. Let c2 be a new constant symbol.Let � = ftn < c2 : n 2 Ng. Let Th(Npeano) = f� 2 SEN(�peano) :Npeano j= �g.Claim: T = Th(Npeano) [� is satis�able.Let �m = ftn < c2 : n < mg and Tm = Th(Npeano) [�m. Let X be a�nite subset of T . Then there is an m such that X � Tm. We de�ne the�peano[fc2g{structure Nm as follows: All symbols of �peano are interpretedas for Npeano. The constant c2 is interpreted as the interpretation of theterm tm. Clearly, Nm j= Tm, so X is satis�able. Using the compactnesstheorem, we conclude that T is satis�able. So let B j= T . It is now easy tosee, that B does not satisfy they Induction Principle. Let X � B(Var) bethe set fn : n 2 Ng. Clearly, X satis�es the hypothesis of the InductionPrinciple, but B(c2) 62 X.4.7.6: RemarkThe same proof also works for N as a �arith-structure.The best we can do in �rst order logic in describing the Induction Prin-ciple consists of writing down each instance for it for which X is de�nableas a formula. This is what we have done in section 4.5.4.8 Uni�cation and ResolutionIn this section we discuss a second deduction method, Uni�cation andResolution, which extends the Reslotion Method of Propositional Logic.4.8.1: RemarkNot treated in the course, to be completed

