Logic for Computer Science (234292)

Prof. J.A. Makowsky
Department of Computer Science
Technion—TIsrael Institute of Technology, Haifa, Israel

October 6, 1997

Abstract

Draft of a textbook on Logic in Computer Science.
The book is based on the courses Logic 1, Logic 2 and De-
finability and Computability, as taught by the author dur-
ing several years at the Computer Science Department at
the Technion—Israel Institute of Technology. Comments
welcome.

This version is used for the course ‘Logic 1’ (234292) given in the
winter semester 1997/8

at the Computer Science Department of the Technion—Israel Institute of
Technology. It was also used in 1990-1996 by the same lecturer. Previous
versions are still useful.

The lecturers are

Dr. Y. Kimchi (yechiel@CS.Technion.AC.IL)
Prof. J. Makowsky (janos@cs.technion.ac.il)

The coordinator for Tirgul is
L. Ravve (cselena@cs.technion.ac.il)
The lecture takes place on
Wednesday, 14:30-16:30

Details of Tirgulim, Reception hours etc. will be posted at the home-
page of the course

http://www.cs.technion.ac.il/ janos/ COURSES/LOGIC/logicl.html

There are seven home assignments (H), a mid-term exam (M) and
a final exam (F). The exams are with open books. The six best home
assignements count. The final grade is computed by the formula

max{F,(F+M)/2,(F+ M+ H)/3,2F + H/3}.

2

Contents
1 Imtroduction 4
2 The Worldof Sets 7
2.1 Sets and operations onsets 7
2.2 Relations and functions L. 10
2.3 Inductive Definitions and Proofs 12
2.4 Somemoresets 14
2.5 Implementing Datastructures assets 17
251 Words 17
2.5.2 Trees. o 18
2.5.3 Natural numbers and its arithmetic operations . . . 19
2.6 Equipotence 21
3 Propositional Logic oL oo 27
3.1 The Syntax and Semantics of Propositional Logic 27
3.1.1 Syntax of Propositional Logic 27
3.1.2 The Truth Table Semantics of Propositional Logic . 30
3.2 Basic Semantic Concepts 33
3.2.1 Validity, Logical Equivalence and Logical Consequence 33
3.2.2 Substitution 37
3.23 Normal Forms 38
3.3 Deduction Methods and Compactness 40
3.3.1 Proof Sequences 40
3.3.2 Manipulations of Proof Seequences 42
3.3.3 Completeness and Compactness 43
3.34 Resolution. 45
3.4 Compactness 49
3.4.1 A Semantic Proof of Compactness 49
3.4.2 Applications of Compactness: Definability 50
3.4.3 Truth Table Extensions of Propositional Logic . . . 52
4 First Order Logic 55
4.1 Vocabularies and Structures 56
4.1.1 Vocabularies 56
4.1.2 Interpretations of Vocabularies 57
4.1.3 Isomorphisms and Substructures * 58
4.2 A Museum of Structures 61
4.2.1 Structures for Arithmetic 61
4.2.2 Graphsand Orders 63
4.2.3 Words and Sets of Words as Structures 64
4.2.4 Data Structures of Computer Science 65
425 €E-Structures 66
4.3 Syntax and Semantics of First Order Logic 66

4.3.1 Syntax of First Order Logic 67

4.4

4.5

4.6

4.7

4.8

4.3.2 Semantics of First Order Logic 70
Basic Semantic Concepts 72
4.4.1 Valdity, Logical Equivalence and Logical Consequence 72
442 Normal Forms 75
4.4.3 Models and Theories * 76
Visit to the Museum: The Meaning Function and Definability 76
4.5.1 The Logical Lieu 77
45.2 Ordered Fields 77
4.5.3 The Natural Numbers 79
454 Graphs and Orders 80
4.5.5 Words and Sets of Words as Structures 80
4.5.6 Data Structures of Computer Science 81
45.7 €E-Structures 82
4.5.8 Substructures 82
Hilbert—style Deduction for First Order Logic 83
4.6.1 Hilbert-style Axioms and Inference Rules 83
4.6.2 Manipulations of Proof Sequences 85
4.6.3 Completeness and Compactness 87
4.6.4 Proof of the Completeness Theorem 88
4.6.5 The Case with Equality 90
Visit to the Museum: Non—Definability 90
4.7.1 Finite Structures 90
4.7.2 The Real Numbers 91
4.7.3 The Natural Numbers 92

Unification and Resolution 92

4

1 Introduction

The purpose of this book is to analyze in a mathematical way the syntax
and semantics of formal languages for the specification of data structures,
for programming, and for reasoning about programs. For this purpose we
model all the notions introduced in the world of sets and use the natural
language of set theoretic mathematics, also known as Naive Set Theory. We
introduce set theoretic concepts whenever they are needed and concentrate
on the themes of syntax and semantics. The first formal language discussed
in detail is propositional logic. The treatment of propositional logic is
dictated by what we need later, and 1s not a goal by 1tself. Methodologically,
it serves as a paradigm for treating such a formal language by mathematical,
i.e., set theoretic, means. Substantially it serves us well to introduce the
basic concepts and questions we want to ask about such formal languages.
It also serves as a basis for further arguments. The main emphasis of
the first part, the course Logic 1, is on first order logic, culminating in
Goedel’s Completeness Theorem and Ehrenfeucht’s classification of first
order definability. The second part, the course Logic 2, concentrates on
the limitations of first order logic, such as Incompleteness Theorems and
the theorems of Lindstrom, and on various extensions of propositional and
first order logic such as Modal Logic, Dynamic Logic, and Temporal Logic.

As the emphasis of the book 1s on the mathematical treatment of top-
ics in syntax and semantics, a word is needed about how to read this
book. Beginning computer science students very often lack performance
and proficiency in mathematical arguments. They often complain about
the scarcity of examples in the mathematical treatment of a subject, and
confuse the abundancy of examples with the soundness of an argument.
Reading a mathematical text 1s an exploratory activity which involves also
paper and pencil. When encountering a definition the reader should be
able to explore the definition by providing examples and counterezamples
actively. Very often simple conclusion and explorations of the definitions
phrased as propositions are really encapsulated formulations of tnfinitely
many examples. To stress this point, our text very often has examples
and propositions, lemmas, corollaries, marked as exercises. The intended
meaning of this, and a conditio sine qua non for the understanding of
the presented material, is that the student really performs these required
exercises proficiently. Printing the solution to these exercises is not only a
waste of paper, but invites the reader to cheat himself, by glancing through
the solution rather than resorting to paper and pencil. Proficiency in math-
ematical arguments is a means of emancipating oneself from beliefs; preju-
dice, and superstition. As R. Godement has put it in his Cours d’Algebre
in 1966:

Fven wn teaching mathematics one can at least attempt to teach the stu-
dents the flavour of freedom and critical thought, and to get them used to

5

the idea of being treated as humans empowered with the ability of under-
standing.

What I would like to add, as Godement took it for granted, but forgot
to mention it, is that I also treat the reader as a human being who is willing
to use this very ability, not only in the limited context of performing the
exercises of this book, but in his whole attitude towards life. Science, as
the logician W.Quine put it, is selfconscious common sense. And so are
logic and all the activities which are related to programming machines to
perform tasks previously reserved to humans.

The following is a discussion of related textbooks. The first five are clas-
sics of mathematical logic (written for the mathematically minded) without
an outlook to computer science. The last three are texts for beginning com-
puter scientists.

(i) E.Mendelson, Introduction to mathematical logic, Van Nostrand,
1964.
This s an excellent, though oldfashioned, book on mathematical logic,
suttable as a first course for mathematics students.

(ii) R.C. Lyndon, Notes on logic, Van Nostrand, 1964.
Very elegant and concise classic text. Written for mathematicians
with some algebraic background. QOur notion of proof sequence is taken
from here.

(iii) H. B. Enderton, A mathematical introduction to logic, Academic
Press, 1972.
A wvery elegant treatment of the basic subjects of elementary logic.
Very precise and still intuitive in its motivation of the basic concepts.

(iv) E.D. Ebbinghaus, J.Flum and W. Thomas, Mathematical Logic,
Springer, 1984.
The state of the art introductory text on first order logic, written for
mathematicians. Covers all relevant basic developments in first order
logic as seen today.

(v) J. Malitz, Introduction to mathematical logic, Springer, 1979.
A wvery elegant and modern treatment of the basic subjects of logic:
Nawe Set Theory, Computability and First Order Logic. Written as
an introduction for mathematicians. In spirit very similar to our
approach.

(vi) P. Halmos, Naive set theory, Van Nostrand, 1960.
This 1s the classic introductory course in Nawve Set Theory. Recom-
mended as background reading.

(vii) Z. Manna, Mathematical theory of computation, McGraw-Hill, 1974.
This was one of the first books on logic in computer science. The

(viii)

presentation is less rigorous than our treatment. Recommended as a
background reading.

M. Wand, Induction, Recursion and Programming, North Holland,
1980.

Here the intended audience are students of computer science. The
approach is similar to our treatment, but the material presented s
chosen with an emphasis on programming languages.

H.R. Lewis and C.H. Papadimitriou, Elements of the theory of com-
putation, Prentice Hall, 1981.

This book combines material of three courses: Discrete Mathemat-
1cs, Automata Theory and Computability and Logic 1 for Computer
Scientists. The last two chapters basically cover the material of our
course.

More references will be given at later stages.

Acknowledgments

I would like to thank my previous assistants Y. Bargury, E. Dichterman, R.
A. Hason, E. Ravve (Mouratova) and A. Sharell for their critical reading
and valuable suggestions during the preparation of this text. I would like to
thank A. Ben—Ephraim, B. Farison, L. Finkelshtein, G. Granot, Y. Pnueli
and E. Roytman whose notes of my course Logic 2 I could use as a basis

for some sections.
I am also indebted to my colleagues S. Ben-David, N. Francez and A.
Litman for their interest and advice.

2 The World of Sets

In this chapter we introduce the (natural, mathematical) language of sets.
We expect the reader to be familiar with sets and functions as taught in a
course on Discrete Mathematics, Calculus, Number Systems or alike. We
also assume the reader is vaguely familiar with data structures such as
graphs and trees. One purpose of this chapter is to fix notation. But,
more importantly, the main purpose of this chapter is to get the reader ac-
quainted with the handling of mathematical objects which are well-defined
as sets of some kind. We are not dealing here with set theory. We hope
the reader will learn the language of sets naively on the way, as one may
learn a language just by living among speakers of that language und using
it. The correct use of the language of sets is sometimes called (mislead-
ingly) Naive Set Theory. There is no theory here in the sense that we will
not reflect upon the foundation of the language of sets. We shall use it
critically, as a style of reasoning. We shall express our mathematical rea-
soning in it and we shall model our objects under study in it, be it formal
languages, computing devices or any other object we wish to study math-
ematically. We shall learn the language of sets by using it. The heading
‘Proposition-Exercise’ is given to a statement (or collection of statements)
which we want to exhibit, but which the reader should prove for himself,
before proceeding further.

2.1 Sets and operations on sets

We first introduce some sets by well known examples. Let N be the set of
natural numbers including 0, Nt be the set of natural numbers without
0, Q the set of rational numbers, R the set of real numbers, C the set of
complex numbers. All these sets are infinite. () denotes the empty set. The
empty set is finite.

We write a € A for the statement ‘a is an element of A’. This statement
is only meaningful provided A is a set. We write A C B if A B are sets
and for every a € A it 1s true that a € B. A is called a subset of B. If A, B
are sets, we write A = B if A C B and B C A and we say that A equals
B. If A is aset (or a well defined object), then {A} denotes the set whose
only element is A.

Let a,b,c be letters of the alphabet. We denote by {a,b,c} the set
having exactly a, b, ¢ as its elements. We consider letters as atoms (urele-
ments), i.e. entities which are not sets, but which can be elements of sets.
We shall treat all ASCI-symbols, letters of the greek alphabet, and possibly
other symbols as such atoms. In particular, if X is a symbol, by abuse of
notation, we may denote by {X; : i € N} an infinite set of atoms Xj.

Let A be a finite set of atoms. We denote by (A)* the set of finite
words (strings) over A. We identify A with the set of one letter words over

8

A and therefore have that A C (A)*. We denote by € the empty word.
If a,b € (A)* are two words, we denote by @ o b the word obtained from
writing b after a. If the context 1s clear we also write ab instead of @ o b.

We allow explicit description of sets. If a,b, ¢ are atoms and A, B are
sets, then {a, A, b, B} denotes the set having exactly a,b, A, B as its ele-
ments. {a, B, {c, B}} is a set with three elements, namely a, B and the set
{c, B}. More generally, if A is a set and ® is a statement about elements
z of A, then {# € A : ®(x)} denotes the subset of A whose elements are
exactly those elements of A for which the statement & is true.

If A, B are sets we denote by A N B the set whose elements are exactly
those @ such that ¢ € A and a € B. AN B 1s called the intersection of A
and B. If A, B are sets we denote by A U B the set whose elements are
exactly those a such that « € A or a € B. AU B is called the union of A
and B.

2.1.1: Proposition—Exercise
Verify the following statements:

(i) B C A for every set A;
(ii) A C A (Reflezivity of inclusion);
(iii) If AC B and B C C then A C C (Transitivity of inclusion);
(iv) A C B implies that AU B = B;
(v) AC B implies that AN B = A;
(vi) AnNB = BNA (Commutativity of intersection);
(vii) AUB = BUA (Commutativity of union);

(viii) AU(BUC) = (AU B)UC (Associativity of union);
(ir) AN(BNC)=(ANB)NC (Associativity of intersection);
(z) AN(BUC)=(ANB)U(ANC) (Distributivity of intersection);
(i) AU(BNC)=(AUB)N(AUC) (Distributivity of union).

Let X be a non-empty set of sets.

We denote by | J X the set which consists of all the elements of elements of
X, ie yeJX iff thereisa Y € X such that y € Y. [JX is called the
union over X. If X = {4, B} and A, B are sets, then [JX = AU B.

We denote by (X the set which consists of all the elements which are
elements of every element of X, i.e. y € [X iff for every Y € X it is true
that y € Y. (X is called the intersection over X. If X = {4, B} and
A, B are sets, then (X = AN B. For X =0 we put |JX =0, but (| X is
undefined.

2.1.2: Proposition—Exercise
Let A, B, C' be sets and X, Y be non—empty sets of sets. Verify the following
statements:

(1)
UxnUy) = JtanB)c|JX:4eX and BeY}
H{anB) c|Jy A€ X and BEY}.

(1)
(Xu()Y) = ({{AuB) C|JX:AeX and BeY}
(WAUB) C|JY:AeX and BEY}.

Let A, B be sets. We denote by A\ B the set consisting of all the
elements of A which are not elements of B. A\ B is called the difference
of B from A or the complement of B in A.

2.1.3: Proposition—Exercise (de Morgan’s laws)
. Let A, B, C be sets and X be a non—-empty set of sets. Verify the following
statements:

(i) A C B implies that B\ (B\ A) = A.
(i) AC B and B C C implies that C\ B C C'\ A
(iii) C\ (AU B) = (C\ 4) N (C\ B).

(iv) C\ (AN B) = (C\ A)U(C\ B).

(1) C\(UX) = {C\ACC: A€ X).

(vi) C\(NX) =U{C\ACC: A€ X).
Let A be aset. We define p(A) to be the set whose elements are exactly

all the subsets of A. p(A) is called the power set of A. Clearly §§ € p(A)
and A € p(A).

2.1.4: Proposition—Exercise
Let A, B be sets and X be a non-empty set of sets. Verify the following
statements:

(i) A C B implies that p(A) C p(B).
(1) p(A)Up(B) C p(AU B).

10

(iii) (AN B) C p(4) N p(B).

(iv) Ufp(4) € plp(A)) : 4 € X} C p(UX).
(1) 9(N1X) € N{p(A) € plp(4)) : 4 € X).

2.2 Relations and functions

The aim of this section is to supply definitions of ‘relation’, ‘function’” and
related notions in enough generality to be of service throughout the book.
These notions ultimately rest on that of the ordered pair (a,b). Although
‘ordered pair’ can be defined in terms of the membership relation, as can
all the notions of classical mathematics, we will not do this here. For the
time being we shall take the ordered pair {a,b) to be a basic (undefined)
notion with the property that {(a,b) = (¢,d) if and only if a = ¢ and b = d.
(a, b) itself is not a set and is treated like an atom, a, b may be sets, atoms
or ordered pairs. By abuse of notation we shall write (a1, a2, a3,...,a,)
for {...{a1,as),as),...,an). {a1,a2,as,...,a,) is called an n-tuple.

The Cartesian product of two sets A and B, written A x B, is the set
consisting of all ordered pairs {(a,b) with a« € A and b € B. By abuse of
notation we write A3 x Aa x Az x...x Ap for (... (A1 x A2) X Az) X ... x A,).
We write A" for (...(A X A) x A)x...... x A). We put further Al = A

n—3
and A° = {#}. The informal definition of A™ can be replaced later by an
iductive definition.

2.2.1: Proposition—Exercise

(i) (AUB) x C'= (A x C)U (B x C);

(ii) (ANB) x (CND)=(AxC)N(B x D);

(iii) (A\B) x C = (A x O)\ (B x C);

(iv) A x B =10 if and only if either A =0 or B = 0;
(v) IfAC B then Ax C C B x C.

2.2.2: Exercise

Prove or disprove the following statements:

(i) (AUB) x (CUD) = (A x C)U (B x D);
(i) If BUC C A then (Ax A)\ (B x C) = (A\ B) x (4\ C).

11

A binary relation is a set of ordered pairs. A binary relation on a set
A is a set of ordered pairs (a1, as) with aj,as € A. In other words, a
binary relation on A 1s a subset of A x A. The domain of a binary relation
R C A x B, which is denoted by Dom(R), is the set {a € A : there is a b €
B such that (a,b) € R}. The range of a binary relation R C A x B, which
is denoted by Ran(R), is the set {b € B : there is aa € A such that (a,b) €
R}. The field of R is the set Ran(R)U Dom(R). For a binary relation R
we denote by R™! the set of ordered pairs (y,) such that (z,y) € R.

An n-ary relation 1s a set of n-tuples. An n-ary relation on a set A 1s
a subset of A”.

2.2.3: Example

(i) The set of (x,y) € N? such that x < y is a binary relation. This
relation 1s called the ‘natural’ order on N.

(ii) The set of (x,y,z) € R3 such that x? + y* = z? is a ternary relation.
This relation is called the geometrical lieu of all the points in R3

satisfying the equation =2 + y* = 22,

A function f is a binary relation, such that for every x there 1s at most
one y for which (x,y) € f. A function f from a set A to a set B, for which
we also write f : A — B, is a function with domain A and Ran(f) C B.
When f is a function we write f(z) = y instead of (x,y) € f. A function
f: A — Bis one to one if f~! is a function. A function f : A — B is
onto if Ran(f) = B. The set of all functions f : A — B is denoted by B4,
If f: A” — B is a function from A” to B, we say also that f is an n-ary
function from A to B.

2.2.4: Proposition—Exercise

(i) Y? has exactly one element, namely B, regardless whether Y is empty
or not;

(ii) For every set X we have X" = {(}}.

If f:A— B andg: B — C are two functions we denote by g o f the
function go f : A — C defined by g o f(z) = g(f(z)). g o f is called the

composition of g and f.

2.2.5: Proposition—Exercise
Let f: A— B and g : B — C' be functions.

(1) If f and g are one to one so is go f;

(i1) If f and g are onto so isgo f.

12

2.2.6: Definition (Restriction of a function)
Let f: A — B be a function and C' C A. We denote by fic the unique
funetion g : C'— B such that for every a € C' we have f(a) = g(a).

This section will be expanded further according to what we might need
later.

2.3 Inductive Definitions and Proofs

One of the most frequently used tools to construct sets and prove state-
ments about them in this book 1s the principle of mathematical induction.
As we need 1t in a more general setting than the reader may be used to we
first define a few auxiliary concepts.

2.3.1: Definition

Let A be a set, B C A be a subset of A and F = |J{F, : n € N} be a set
of functions such that for each f € F,, f : A — A s an n-ary function on
A. We call n the arity of f € Fi,. A set X C A is F-closed over B if

(i) BC X and
(ii) for every n € N, every f € F,, and every {(a1,as,...,an) € X" also
flar,as, ... an) € X.

2.3.2: Proposition—Exercise
Let A, F be as above. Prove the following statements:

(i) A is F-closed over every B C A.

(ii) Let X, Y C A be F-closed over some B C A. Then X NY is F-closed
over B.

(iii) Let X be a set of sets X C A which are all F-closed over some B C A.
Then (X is F-closed over B.

2.3.3: Proposition—Exercise
Let A, B, F be as above. Let Xp r be the intersection of all subsets of A
which are F-closed over B. Prove the following statements:

(i) Xp F is F-closed over B.
(i) If X C A is F-closed over B then Xp p C X. In other words, Xg r
s the smalllest subset of A which 1s F'-closed over B.

2.3.4: Definition (Inductively defined set)
We say that a subset Y of A is inductively defined with basis B and
closure condition F +f Y = Xp . Y s called the closure of B under F.

13

2.3.5: Remark
Propositions 2.3.2 and 2.3.3 establish that Definition 2.3.4 is ‘well-defined’.

2.3.6: Example (The set of polynomials in one free variable:)

Let A be the set (Ag)*, the set of finite words over Ag = {0,1,2,-,+,(,)}.
We define the set P (of polynomials in one free variable) inductively with
basis B and closure condition F'.

Basis: B = {0,1,z}, in other words, 0,1, are in P.

Closure (condition): Let f; : A2 — A be the function consisting of all the
pairs {{(wy, wa), (w1 + wa)) and Let fa: A — A be the function consisting
of all the pairs ({wy,wa), wy - wa). Now let F = {f1, fa}.

In other words, if wy,ws € P so are (w1 + wse) and wy - ws.

2.3.7: Convention (Proof by induction:)

LetY C A be inductively defined with basis B and closure condition F'. We
would like to prove that some statement ® is true for all elements of Y. To
do this, let Xg be the set of all elements of Y for which ® s true. We call
the proof that Xg is F'-closed over B an inductive proof for ‘@ is true for
all elements of Y.

2.3.8: Remark

The use of the phrase ‘“inductive proof’ is justified by the following obser-
vations: By Proposition 2.3.3 it suffices to show that Xg s F-closed over
B, because then Y C X¢ and Xo C Y by assumplion, therefore Y = Xg.
Clearly then @ is true for all elements of Y.

Now, a ‘proof by induction’ consists of the following scenario: First we
show that ® is true for every element of B. We usually call this part of the
scenario Basis. Then we have to show that for every f € F, C F' and every
ay,az,...,an which satisfy ® (i.e which are in Xg) also f(ai,aq,..., an)
satisfies ®. This part of the scenario we usually call Closure.

2.3.9: Example

Let @ be the statement ‘all words (polynomials) of P have an even number
of parentheses’.

Basis: As zero is even, B C Xg.

Closure: f; adds no parentheses and fo always adds two parentheses to a
word, therefore Xg is F'-closed.

2.3.10: Definition (Inductively defined function)

Let g : A — B be a function. We say that F is inductively defined, if the
set ¢ C A x B 1s inductively defined as a set and g 1s a function. In other
words, g is the smallest set Xp p closed under F' over B for some set of
functions F and B C A x B, and for every a € A there is a unique b € B
with {a,b) € Xg p.

14

2.3.11: Example

We give here an inductive definition for the factorial fact : N — N.
Basis: (0,1) € fact and (1,1) € fact;

Closure: If (n, k) € fact then (n+1,kn) € fact.

As usual we write fact(n) =k for (n, k) € fact.

2.3.12: Proposition—Exercise

(i) If X is finite (or possibly empty) with n elements, then {0,1}* has
2" elements.

(ii) Let fact : N — N as defined above. Show that for every n € N we
have that 2" — 1 < fact(n)

2.4 Some more sets

When we build our mathematical objects, we have at our disposal at the
beginning very few sets. We may have some atoms (or a set of atoms), and
we have the empty set. We list here a few set building principles, which
will be the basis of any later construction. The first three have been used
implicitly before.

2.4.1: Principle (Two element sets)
For every two sets A, B there is a sel, denoted by {A, B}, whose only
elements are exactly A and B.

2.4.2: Principle (Union of two sets)
For every two sets A, B there is a set, denoted by AUB, whose only elements
are exactly the elements of A and of B.

We have used the ordered pair as a basic construction. We now will give
a definition of the ordered pair as a set. This definition was proposed by
K. Kuratowski. Their are other definition possible, but this is the mostly
used.

2.4.3: Definition (Ordered pair)
We denote by (A, B) the set {{A},{A, B}}.

2.4.4: Proposition—Exercise
Let A, B,C, D be four sets (or atoms).

(i) If A# B then (A, B) # (B, A) .
(ii) (A, By =(C, D) iff A=C and B=D.
2.4.5: Exercise

Which of the following alternative definitions satisfy F(A, B) = F(C, D)
iffA=Band C =D ?

15

(1) F(A, B) = {A,{4, B}};

(1) F(A, B)={A{B}};
() F(A, B) = {{{A}}, {4, B}};
() F(A, B) = {{{A}}, {{4, B}

2.4.6: Principle (Union of set of sets)
For every two sets A there is a set, denoted by | J A, whose only elements
are exactly the elements of every element of A.

2.4.7: Principle (Power set)
For every set A there is a set, denoted by p(A), such that X € p(A) iff
X CA.

2.4.8: Principle (Specification of subsets)

Let ® be a property and A be a set. Then there is a set, which contains
exactly those elements of A which salisfy ®. We denote this set by {x €
A x satisfies D}.

The principles described so far are very intuitiv. We build our sets
from previously built sets by describing the construction. The sets we
can build up to now are all, what we describe intuitively as ‘finite’. The
next few principles allow us to construct some ‘infinite’ sets. The German
mathematician J.Dedekind (1831-1916) and the Ttalian mathematician G.
Peano (1858-1932) gave the first definition of the Natural Numbers as a
set. It says that the Natural Numbers are the smallest set closed under a
‘successor function’. The particular definition of such a ‘successor function’
we shall use here is due to J. von Neumann (1903-1957)

2.4.9: Principle (Closure under successor)
For every set A there is a set B such that A C B and whenever x € B then
also (x U{x}) € B.

2.4.10: Proposition—Exercise
For every set A there is a (unique) smallest set SU(A) such that A C
SU(A) and whenever € SU(A) then also (x U{x}) € SU(A).

2.4.11: Definition (Set of Natural Numbers)
We denote the set SU({0}) by N. and the set SU({0})\ {0} by N*.

2.4.12: Definition (Successor function of N)
We define a relation succ : N — N as follows by sucec = {{a,b) € N . b =

aU{a}l}.

2.4.13: Proposition—Exercise
succ 18 a function which s one—one and onto.

16

2.4.14: Principle (Closure under ordered pairs)
For every set A there is a set B such that A C B and whenever x,y € B
then also (x,y) € B.

2.4.15: Proposition—Exercise
For every set A there is a (unique) smallest set CART(A) such that A C
CART(A) and whenever x,y € CART(A) then also (x,y) € CART(A).

2.4.16: Proposition—Exercise
For every A we have:

(i) Ax AC CART(A);
(ii) (Ax A) x AC CART(A) and A x (A x A) C CART(A);
(iii) if X,Y C CART(A) then X x Y C CART(A).

We now can give a proper definition if the n—fold cartesian product of
a set A:

2.4.17: Definition (n—fold Cartesian product)

Let A be a set. We define inductively a function carty : N — CART(A)
as follows:

Basis: cart4(0) = {0} and cart4(1) = A.

Closure: carta(n+1) = carts(n) x A.

The following is a generalization of the previous constructions.

2.4.18: Principle
For every set A there is a set B such that A C B and whenever x,y € B
then also (x U{y}) € B.

2.4.19: Proposition—Exercise
For every set A there is a (unique) smallest set HF(A) such that A C
HF(A) and whenever x,y € HF(A) then also (x U {y}) € HF(A).

2.4.20: Definition (Hereditary finite sets)
We denote the set HF({}}) by HF.

HF looks like a ‘small world of sets’. In some precise sense all the
finite objects which can be built from the empty set alone are in HF. The
following proposition makes this more precise.

2.4.21: Proposition—Exercise

The set HF has the following properties:

(i) (Transitivity of €)
Ifc ¢ HF and y € z so y € HF;

17

(ii) (Closure under subsets)
If e ¢ HF and y C x so y € HF;

(iii) (Closure under union and intersection)
If 2,y e HF so are x Uy € HF and x Ny € HF,

(iv) (Closure under ordered and unordered pairs)
If 2,y € HF so are {x,y} € HF and (x,y) € HF;

(v) (Closure under power sets)
If x € HF so p(x) € HF.

2.4.22: Proposition—Exercise
For every set A we have that SU(A) C HF(A) and CART(A) C HF(A).

2.5 Implementing Datastructures as sets

In this section we shall introduce various objects we shall study, such as
words, trees, natural numbers and give their definitions as sets. The con-
tents of this section are not essential for understanding the script.

2.5.1 Words

Given the natural number N denote by I,, the set I, = {0,1,...,n—1}.
Iy = 0. Denote by AM) the set A= i.e. the set of functions w : I,, — A.
For w € AM)

Now we put

2.5.1: Definition (Words)
Let A be a set (an alphabet).

(1) A" =,cN AM) s the set of finite words over A;
(i) At = UnEN+ AM) s the set of finite non-empty words over A.

(iii) We denote by {(w) the unique n € N such that w € A™). ((w) is
called the length of w, and ¢ s a function from A* to N.

(iv) w(k) € A denotes the k-th letter of the word w, if k < n, otherwise
it 1s not defined.

(v) The empty word ¢ is the only element of A?.

(vi) Let k <n, v € A¥) and w € A, v is an initial segment of w if for
every j < k we have v(j) = w(j).

18

2.5.2: Definition (Concatenation of words)
Let A be a set. We define a binary function o : A** — A* inductively as
follows:

(i) Forv e A and a € A we put voa € ATV defined as voa(k) = v(k)
fork <n and voa(n) = a.

(ii) We note that for every non-empty word w € A* there is a unique
a € A and a unique v € A* such that w = voa.

(iii) Assume that o : A* x A" — A* has been defined, and let u € A*

and w € AP As w=voa, we put uow = (uov)oa.

2.5.3: Proposition—Exercise
Prove by induction:

(i) o: A* x A* = A* is associative, i.e. for every u,v,w € A* we have
(uowv)ow)=wuo(vow).

(ii) € is a neutral element for o, i.e. for every w € A* we have e o w =
w = woeE.

(iii) For every v,w € A* we have £(v o w) = £(v) + £(w) and if v is an
initial segment of w then £(v) < {(w).

(iv) If A has k elements, then A" has k" elements.

2.5.2 Trees

Trees are often described as undirected circuit—free graphs. We shall de-
scribe here how to build directed trees as sets.
We first give an inductive definition of finite trees as a subset of

CART(A).

2.5.4: Definition (Tree over A)

Let A be a set. The set TREE(A) C CART(A) and a function d :
TREFE(A) = N, the depth of a tree, are inductively defined as follows:
Basis: Fvery a € A isin TREE(A). d(a) = 0.

Closure: If Ty,...,T, € TREFE(A) and d(T;) = d; for i < n then
T={T\,...,Tyy e TREE(A) and d(T) = maxz{dy,...,do} + 1.

(Th, ..., Ty) is called the father of Ty, ..., T,,. For i< n T; is the i-th son

Of<T1,...,Tn>.

2.5.5: Definition (Subtrees)
Let Ty and Ty be in TREFE(A). Ty is a subtree of Ty is defined inductively:
Basis: 15 is a subtree of itself.

19

Closure: IfT) is a subtree of To and Ty ts a son of T} then Ty is a subtree
Of Tz.
The subtrees T of Ta with d(T') = 0 are called leaves of Ts.

We next define labeled trees in a similar way:

2.5.6: Definition (Tree over A with node labels from B)

Let A and B be sets. The set TREEp(A) C CART(A U B) and a func-
tion d : TREFER(A) = N, the depth of a tree, are inductively defined as
follows:

Basis: Fverya € A is in TREEg(A) with root a. d(a) =0.

Closure: If Ty,...,T, € TREEgp(A), b € B and d(T;) = d; for
i < mnthenT = (b{Ty,...,Ty)) € TREE(A) and has root b. d(T) =
maz{dy, ..., d,}+ 1.

b s called the father of Th, ..., T,,. Fori<n Tj is the i-th son of b.

2.5.7: Definition (Subtrees of labeled trees)

Let Ty and Ty be in TREFEg(A). T is asubtree of Ty is defined inductively:
Basis: Ty is a subtree of itself.

Closure: IfT) is a subtree of To and Ty ts a son of T} then Ty is a subtree
Of Tz.

The subtrees T of Ta with d(T') = 0 are called leaves of Ts.

Trees and labeled trees can be drawn as two—dimensional pictures. The
drawing can be defined inductively: For a leave just write down the letter
a € A
7T =(T1,...,T,) and you know how to draw the 7;’s, draw T by drawing
the T;’s in their order, draw a point above them and link this point with
the trees below.

T = {b(T1,...,Th),) and you know how to draw the T;’s, draw T by
drawing the 7;’s in their order, draw the letter b above them and link this
point with the trees below.

2.5.8: Exercise

Draw some sample trees.

2.5.3 Natural numbers and its arithmetic operations

In this subsection we define the arithmetic operations on the Natural Num-
bers N. Recall that suce(z) = 2z U {x}.
Our first task is to define the linear order on IN.

2.5.9: Definition
We define a binary relation ‘less or equal’ on N, which we write by infiz
notation: for a,b € N we writea <b iffa €b ora =2».

We have to verify that our definition satisfies our intuition, i.e. that <

20

behaves as we expect.

2.5.10: Proposition—Exercise (Linear order on N)
Show by induction that with the above definition, < is a discrete linear
order on N with a first element, 1.c.

(i) (Reflexivity) For every a € N we have a < a.
(ii) (Transitivity) For every a,b,c € N, if a < b and b < ¢ then a < c.
(iii) (Linearity) For every a,b € N we have a < b or b < a.
(iv) (Antisymmetry) For every a,b € N we have a = b iff a < b and b < a.
(v) (Discreteness) For every a € N we have
(v.a) a < suce(a),
(v.b) a # succ(a) and
(v.c) For every b € N with a < b < succ(a) we have that a = b or
b = suce(a).
(vi) (First element) For every a € N we have that § < a.

(vii) (No last element) For every a € N there is a b € N such that b # a
and a < b.

2.5.11: Convention
We write 0 for §, the first element of N, 1 for succ(0), 2 for succ(1), ete.

Our next task is to define the arithmetic operations addition and mul-
tiplication.

2.5.12: Definition (Addition)

Next we define inductively a binary function ‘addition’, which we again
write wn infir notation.

Basis: For a € N we put a+0 =a and a+1= succ(a).

Closure: For a,b € N we put a + suce(b) = suce(a + b).

2.5.13: Proposition—Exercise (Properties of addition)
Show by induction that for every a,b,c € N we have

(i) (Commutativity) a+b=">+ a.

(ii) (Associativity) (a+b)+c=a+ (b+¢)
(iii) (Neutral element) a+0=0+a = a.
(iv) (Monotonicity) If a <b thena+c<b+e.

21

2.5.14: Definition (Multiplication)

Next we define inductively a binary function ‘multiplication’, which we
again write in infir notation.

Basis: Fora € N we puta-0=0and a-1 = a.

Closure: For a,b € N we put a - suce(b) = (a - b) + a.

2.5.15: Proposition—Exercise (Properties of multiplication)
Show by induction that for every a,b,c € N we have

(i) a-0=0.

(ii) (Commutativity) a -b=1"5-a.

(iii) (Associativity) (a-b)-c=a-(b-¢)

(iv) (Distributivity) (a +b)-c=(a-c)+ (b-¢)

(v) (Neutral element) a-1=1-a=a.

(vi) (Monotonicity) If a <b then a-c<b-c.

2.6 Equipotence

In this section we introduce the notion of ‘two sets having the an equal
number of elements’.

2.6.1: Definition (Equipotenct sets)
Let A and B be sets. We say that a set A is equipotent to set B if there
1s a one—one function on A onto B. If A and B are equipotent we write

A~ B.

This definition corresponds to our intuition when dealing with ‘small’
sets. Exploring this definition will show that our intuition does not nec-
essarily go beyond the every day expirience. For example, a set A may
properly contain a set B and still be equipotent to B. Of course this can
not happen if A is “finite’.

2.6.2: Example
Let B = {n? :n € N}. Then N D B. Define f : B = N, f(r) = 22
Clearly f 1s one—one and onto B, so N and B are equipotent.
2.6.3: Example
The open unit interval (0,1) = {z € R | 0 < & < 1} is equipotent to
the set R of all real numbers. To see this, let f(z) = tan @ Then
f:(0,1) = R is one—one and onto, so (0,1) ~ R.
We next show that equipotence between sets 1s an equivalence relation.

2.6.4: Theorem
For all sets A, B, and C' :

22

(i) A~ A.

(ii) If A~ B, then B ~ A.

(iii) If A~ B,and B ~ C, then A ~ C.

Proof. (i) Define f : A— Aby f(a) =aforalla € A. Then f: A= A

is one—one and onto, so A ~ A.

(i1) Suppose A ~ B. Then there is a function f : A — B, one-one and
onto. Clearly f~' : B — A is one—one and onto, so B ~ A.

(iii) Suppose f: A —= B, and g : B — C' are one-one and onto functions.
Then from Proposition—Exercise 1.2.5, the composition g o f is one—
one and onto. I

So far, equipotence allows us to compare sets. Comparisons to partic-
ular sets, of which we have some intuition, is useful. Using N for such
comparisons allows us to define, what we called till now ‘finite’ and ‘infi-
nite’.

2.6.5: Definition (Finite, infinite, countable and uncountable)
Let A be a set.

(i) A is countable if A~ B for some B C N.
(ii) If for some n € N, A ~{0,1,...,n— 1} then A is finite.

(iii) A is infinite, if there is a function f : N — A which is one-one (but
not necessarily onto).

(iv) A is uncountable if it is infinite, but not countable.

2.6.6: Examples
(i) R and HF are infinite.
(i) If A+ 0 then CART(A) is infinite.
(iii) Let E = {n € N : n is even}. E is countable and infinite.

2.6.7: Proposition—Exercise

(i) No set is both finite and infinite.
(ii) Let A and B be finite sets, then AU B is finite.

23

(iii) The union of a finite number of finite sets is finite.
(iv) Let A and B be finite sets, then A x B is finite.
(v) The cartesian product of a finite number of finite sets is finite.

2.6.8: Proposition

(i) Let A and B be countable sets, then AU B is countable.

(ii) Let A and B be countable sets, then A x B is countable.
(iii) The cartesian product of a finite number of countable sets is countable.
(iv) If A is a countable set, so is CART(A).

(v) The union of a countable number of countable sets is countable.

Sketch of proof:. (i) As A and B are countable, map A into the even
numbers and B into the odd numbers.

(ii) and (iii) follow from (iv).

(iv) Define f: CART(A) — N inductively. Map A into the even numbers
by a function fy. Extend f as follows: For a,b € CART(A) and f already
defined, put f({a,b)) = 27(®) . 3/®) Tt is easy to see, from the properties
of the ordered pair, that f so defined is one—one.

(v) Let A ={A; :n € N be a family of countable sets and let f; : 4; - N
be one-one. We shall map UiEN A; into N x N by the function g defined
as follows: For a € A; we put g(a) = (¢, fi(a)). Tt is easy to see that g is

one—one. I

2.6.9: Proposition
HF is countable.

Proof:. We shall write HF as a countable union of finite sets. Then the
theorem follows from proposition 2.6.8.

We define inductively HF = (J{H,, : n € N} with

Hy = {0},

Hopy1 = HyU{aU{b} € HF : a,b € H,}. Now prove by induction, that
each H,, is finite.

We have not given an example of an uncountable set. To exhibit such
sets we first prove atheorem:

2.6.10: Theorem
Let A be an arbitrary set, and f any function f : A — p(A). Then f is
not onto p(A).

24

Proof. We need to show that there is a B € p(A) such that B & Ran(f).

Let B={z:2x € Aand z ¢ f(x)}. Then B C A and so, B € p(A4).
Suppose B € Ran(f), then B = f(a) for some a € A. We ask whether or
nota€ B 7

If a € B then by definition of B a € f(a). But B = f(a) so a € B, a
contradiction.

If a ¢ B then a € f(a) so, again by the definition of B we conclude
that a € B, contradiction.

Both assumptions a € B and a € B lead to contradictions, our assump-

tion that B € Ran(f) is erroneous, so B ¢ Ran(f). |

2.6.11: Proposition—Exercise
Let A be an arbitrary set. Then A 4 p(A).

To compare sets which are not equipotent, we introduce the following
definition:

2.6.12: Definition

We say that B is at least as numerous as A if A is equipotent with a subset
of B, and we write A < B.

If B is at least as numerous as A but not equipotent to A, we say that B
s more numerous than A and we write A < B.

2.6.13: Proposition—Exercise
For any three sets A, B, C' we have:

(i) A< A;
(ii) if A< B and B < C then A < C.

Now we are ready to show that uncountable sets in fact do exist.

2.6.14: Theorem (Cantor)
Let A be an arbitrary set, then A < p(A).

Proof. Let function f: A — p(A) defined by f(a) = {a} foralla e A. f
is one to one function from A into p(A). Thus A < p(A). By the previous
proposition, A is not equipotent with @(A). Hence A is less numerous then

o(A). i

Proposition 2.6.13 states that < is reflexiv and transitiv. If we find that
for two sets A, B we have A < B and B < A we would suspect that A ~ B.
Indeed, we have

2.6.15: Theorem (Cantor-Bernstein)
IfA<Band B < A, then A~ B.

25

Proof. Let f: A — B and ¢ : B — A be one—one functions. Define
Ch, D, inductively as follows:

Cy = A— Ran(g), Dy= f(Cpy) and,

Cny1 = g(Do), Dy = f(Cr)

The function showing that A ~ B is the function h : A — B defined
by:
h(z) = { f(@) if € ¢, for some n,

g~ (z) otherwise

Clearly that if z € A but &€ C,, for any n, follows that z € Cj and hence
x € Ran(g), so g~1(x) can be applyied in this case.

We have to show that h is one-to-one and onto B. To show that & is
one-to-one consider distinct 2’ and z” in A. Since both f and g~! is one-to-
one, the case need to be cheked when 2’ € Cy for some k, and =" &€ | J,, Cy,.
In this case there is k such that h(z’) = f(2') € Dy, whereas h(z") =
g~ Hx") & Dy, otherwise we would get that 2’ € Cgy1, contradiction.
So,h(z’) # h(x"). To show that h is onto B, consider a point ¢ in B —
U, Dn. Where is g(y') 7 Clearly g(y') ¢ Co, also g(y') ¢ Cl, because
Cny1 = 9[Do], ¥ € Dy, and g is one-to-one. So there is 2’ such that

/

¥ = g(y) and 2’ ¢ C,, for any n. This shows that for every y € B,
y € Ran(h).

2.6.16: Corollary
N ~ HF.

proof:. N C HF by their definitions. So we have N < HF. By proposition
2.6.9 HF is countable.

The Cantor-Bernstein theorem allows us to establish equipotency of

various sets. E.g. the set{0, 1}N = 2N off all infinite sequences of 0’s and
1’s is also uncountable.

2.6.17: Theorem
p(N) ~ 2N

Proof. For each A C N define the characteristic function of A, x : N —
{0, 1}, as follows:
(n) = 0 ifne A
MW= 11 ifngAa
It 1s easy to check that the correpondence between sets and their charac-

teristic functions is one-to-one mapping of p(IN) onto {0, l}N.

26

2.6.18: Proposition—Exercise
Let A be an arbitrary set. Then p(A) < 24.

2.6.19: Proposition—Exercise
IfACBCC and A~ C, then all three sels are equipolent.

2.6.20: Proposition—Exercise
The set R of real numbers is equipotent to the closed unit interval [0, 1].

Hint: use the preceding proposition with example 2.6.3.

2.6.21: Theorem
The set R of real numbers is equipotent to the power set of N, i.e. R ~

p(N).

Proof sketch. To prove he theorem we show that R ~ 9N and hence
R ~ p(N), from theorem 2.6.17.

To prove this it suffices, by the Cantor-Bernstein theorem, to show
R < 2N and 2N < R.

To show that R < 2N, we construct a one-to-one function from the

bl

open unit interval (0, 1) into 9N The existence of such a function,together
with the fact that R ~ (0,1), gives us R ~ (0,1) < 2N The function is
defined by use of binary expansions of real numbers: map the real whose
binary expansion is 0.1100010... to the function in 9N whose succesive
values are 1,1,0,0,0,1,0,.... For definiteness, always select the nontermi-
nating binary expansion.

To show that 2N < R we use decimal expansions. The functionin in 9N
whose successive values are 1,1,0,0,0,1,0,...1s maped to the real number
with decimal expansion 0.1100010.... This maps 9N one-to-one into the

closed interval [0, £]. i

27
3 Propositional Logic

The purpose of this chapter is to introduce the basic questions which one
might ask about formal languages and to formulate them precisely in the
framework of the language of sets. We also answer these questions in the
case of Propositional Logic.

3.1 The Syntax and Semantics of Propositional Logic
3.1.1 Syntax of Propositional Logic

Let Symb be the set consisting of the atoms {A,V, =, -, T,F,(,)} and Var
be the set {po, p1,pa, ..., pi, ...} where i € N. We treat the elements of Var
also like atoms. Symb is called the set of logical symbols and parentheses
and Var is called the set of propositional variables.

3.1.1: Definition (The set of well formed formulas WFF as
strings:)

The set of well formed formulas WFF s a subset of (Symb U Var)*, the
finite words over Symb U Var, defined inductively as follows:

Basis: (Atomic formulas of WFF).

(i) For each i € N p; is in WFF.

(ii) F ¢ WFF.

(iii) T € WFF.

Closure:

(i) If ¢1, ¢2 are in WFF, so is (¢1 A ¢2);

(ii) If ¢1, @2 are in WFF, so is (¢1 V ¢2);

(iii) If ¢1, ¢2 are in WFF, so is (¢1 — ¢2);

(iv) If ¢ is in WFF, so is 2¢.

The set WFF_, g1 C WFF is defined similarly but using only (i) and
(ii) of the basis and (iii) of the closure condition.

We shall always use lower case Greek letters to denote elements of
WFF. We shall sometimes write ¢(p1,pa,...., pn) meaning that all the
variables occurring in the word ¢ are among p1,p2, ..., Pn-

3.1.2: Examples

(i) The following are well formed formulas of WFF:
((pr = T) A=(=ps V1)), (((pr = p2) = p1) = p3), =(=p1 A p2),
(==p1 V pa).

(ii) The following are not well formed formulas of WFF :
(((=)), (=p1)), (=p1), pr Ap2, (p1 Apz, (p1 Ap2)), pip2—)).

(itt) The following are well formed formulas of WFF{_, gy:
(((pr = F) = p1) = F), (pp = F) = (p1 = F)).

28

Next we define the set of well formed tree formulas WFTF.

3.1.3: Definition (The set of well formed tree formulas WFTF:)
Basis: Var C WFTF and T,F € WEFTF. They are trees consisting of a
single node.

Closure:

(i) If T1, T, € WFTF then the tree with root A and Ty as its left son and
Ty as its right son is also in WFTF.

(ii) If T\, To € WFETF then the tree with root V and Ty as its left son and
Ty as its right son is also in WFTF.

(iii) If Ty, Ty € WFTF then the tree with root — and Ty as its left son
and Ts as its right son is also in WFTF.

(iv) If Ty € WETF then the tree with root = and the only subtree Ty as its
son 1s also in WFTF.

Let T'e WFTF. We can think of writing a well formed formula ¢ as
the process of obtaining a string write(T) from a tree T. We start at the
leaves and just write them down as strings. If we are at a node labeled by
a symbol e from {A,V, —} and two subtrees T}, T> we add the parentheses
and write the string (write(T1) e write(Tz)). If a node is labeled — followed
by a subtree T we write the string —write(T). We easily observe that
write(T) € WFF.

We can think of reading a formula ¢ as the process of obtaining a tree T'
from the string ¢. One can easily convince oneself that writing is unique.
i.e. there is exactly one string ¢ which can be obtained from 7' in the
above way. However, reading ¢ seems more complicated. To establish its
uniqueness we have to prove it. The proof can easily be converted into an
algorithm.

3.1.4: Theorem (Unique readability of WFF:)

For every well formed formula ¢ € WFF there is exactly one labelled tree
T such that write(T) = ¢.

Proof. The proof uses the lemmas below. The details of the proof of the
theorem and the lemmas are left as an exercise. The first four lemmas can
be proved independently. To prove lemma 3.1.9 one needs all the previous
lemmas. For lemma 3.1.10 one needs only lemma 3.1.9. Finally, to prove
the theorem, one needs only lemma 3.1.10.

3.1.5: Lemma
If $ € WFF then ¢ is not the empty word and contains at least one variable
p; € Var or one of the constants T,F.

3.1.6: Lemma
Let ¢ € WFF. Then the number of left parenthesis in ¢ equals the number
of right parentheses in ¢.

29

3.1.7: Lemma

Let ¢ € WFF and o be a proper nitial segment of the word ¢, i.e. there
exists a word 3 such that 3 # ¢ and ¢ = a o 3. Then either o contains
no parentheses or the number of left parentheses of o s bigger than the
number of its right parentheses.

3.1.8: Lemma
Let ¢ € WFF and o be an initial segment of the word ¢. If o # ¢ and has
no parentheses then o € {—}*.

3.1.9: Lemma
Let ¢ € WFF and o be a proper initial segment of the word ¢. Then
a & WFF.

3.1.10: Lemma
Let ¢a a, alaﬁaﬁl € WFF.

(i) Let ooy € {A,V, =} If ¢ = (veB and ¢ = (10101 then o = ay, f =
51 and e = ey,

(ii) If = ~a and ¢ = —f then a = 3. Furthermore, there are no oy,
and no e € {A,V, =} such that If ¢ = (oy @ 1.

Combining the preceeding lemmata gives a proof of the above theorem.

3.1.11: Exercise
Change the definition of WFF such that no parentheses are used and show
that the Unique Readability Theorem fails for the resulting definition.

3.1.12: Remark

The inductive definition of well formed formulas suggests that formulas
are defined in stages. Inductive definitions are bottom up constructions.
The Unique Readibility Theorem allows us to view formulas also top down
without ambiguity. We want to make this more precise.

3.1.13: Definition (Rank of a formula:)

Let rank be a function rank : WFF — N whose value indicates in how
many stages a formula has been built. We define inductively sets WFF,
forn € N.

Basis: Let WFF be the set of formulas in {T,F} U Var. We call these
formulas also atomic formulas. If ¢ € WFFy then rank(¢) = 0.
Closure: Let ¢1,¢2 € WFF,,. Then ¢1, (¢1 A ¢2), (61 V ¢2), ($1 — ¢2)
and —¢1 are in WFF, 1.

rank(¢1) is defined to be the smallest n € N such that ¢ € WFF,,.

3.1.14: Proposition—Exercise
Prove the following:

30
(i) WEF, C WFF,,,;
(ii) rank(é1 A ¢2) = 1 + max{rank(¢1), rank(¢2)};

(

(iii) rank(¢1 V ¢2) = 1 + max{rank(¢1), rank(¢2)};

(iv) rank(¢r — ¢2) = 1 + maz{rank(é1), rank(¢2)};
(m¢1) = 1+ rank(¢).

We now generalize our notion of well formed formulas. This will be
used in the sequel, but it is useful for checkin whether one understands the
material presented so far.

3.1.15: Definition (The set of well formed formulas WFFg:)

Let S = {s1,82,....,8m}| be a set of symbols and n(s;) € N be a natu-
ral number called the arity of s;. Let S = SU{(,;,)}. Let Var be the
set of propositional variables. WFF g is inductively defined as a subset of
(S1UVar)*.

Basis:

(i) Var C WFFg.

Closure: If s; € S and n(s;) = k and ¢1,¢2,...,0 € WFFg then
si(¢1; @25 .5 0x) € WFFg.

3.1.16: Example
(Erercise): Let S = {F,—, A, kuku} with n(F) = 0,n(=) = 1,n(A) = 2,
and n(kuku) = 3. Write some formulas of WFFg.

3.1.17: Theorem

(Erercise): Formulate and prove the Unique Readibility Theorem for
WFFg.

The following will be useful later:

3.1.18: Theorem
Let S be countable. Then WFFg s countable.

3.1.2 The Truth Table Semantics of Propositional Logic

The "meaning” of a well formed formula of WFF is a an element of the
set {0, 1}, where we think of 0 as ”false” and 1 as "true”. Note that the
set {0, 1} is a subset of N and the intended interpretation of its elements
as "true” and ”false” is outside the scope of our mathematical framework.
The definition of a meaning function given in in the language of sets is
the goal of this subsection. We shall do this in three stages, defining truth
tables, assignments and only then the meaning function.

31
3.1.19: Definition (Truth tables:)

Let n € N. An n-ary truth table TT is a function TT : {0,1}" — {0,1}.
With each symbol A,V,— we shall associate binary truth tables
TTa, TTy, TT., respectively in the following way:

(i) TTy is given by
TTA(0,0) = 0, TTx(0,1) = 0, TTh(1,0) = 0, TTr(1,1) = 1,

(ii) TTy is given by
TTy(0,0) =0, TT,(0,1) = 1, TTy(1,0) = 1, 7T, (1,1) = 1,

(iii) TT., is given by
TT,(0,0) =1, TT(0,1) = 1, TT,(1,0) = 0, TT,(1,1) = L,

(iv) With the symbol —~ we shall associate a unary truth table TT. defined
by TT.(0) =1 and TT-(1) = 0.

(v) With the symbols T,F we shall associate the zero-ary truth tables
(i.e. constant functions) TTr = 1 and TTr = 0 respectively.

3.1.20: Remark

We can think of the truth tables as behavioural descriptions of boolean cir-
cuits. The truth table of a Vv, (A\, =) deseribes the behaviour of an or—gate
(and-gate, not—gate respectively).

3.1.21: Definition (Truth assignments:)
A (propositional) truth assignment is a function z : Var — {0,1}. We
denote by Ass the set {0,1}V% of all truth assignments.

3.1.22: Remark
We can think of the variables in Var as registers and z as a function reading
the content of the registers in a current state.

3.1.23: Definition (Meaning function:)

A meaning function M is a function M : WFF x Ass — {0, 1}.
We shall denote by Mpy, the meaning function for Propositional Logic de-
fined inductively as follows:

Basis:

(i) Mpr(pi,z) = z(ps);

(ZZ) MPL(T,Z) = TTT = 1,’

(iii) Mpr(F,z) = TTp = 0.

Closure:

(i) Mpr((¢1 A ¢2),2) = TTA(Mpr (1), MpL(62));

(it) Mpr((¢1V ¢2),2) = TT (MpL (1), Mpr(92));

(i) Mpr((¢1 — ¢2),2) =TT, (Mpr(¢1), Mpr(92));

() Mpr(—¢,2) = TT-(MpL(9))-

32

3.1.24: Remark

(i) Note that this defines also a meaning function My_, gy for the well
Jormed formulas of WFF(_, gpy. As WFF;_, gy C WFF we set M;_,
to be the restriction of Mpp to WFF [, g X Ass.

(ii) We note that the definition above rests on the Unique Readibility The-
orem for the formulas of WFF, as it relies not on the string ¢ but on the
unique Ty such that write(T,) = ¢.

3.1.25: Examples

(i) Show that for every formula ¢ € WFF such that ¢ = (¢1 = ¢1) and
for every propositional assignment z Mpyp(¢,z) = 1.

(ii) Show that for every formula ¢ € WFF such that ¢ = (¢1 A —¢1) and
for every propositional assignment z Mpy(¢,z) = 0.

(iii) Let ¢1 = (-1 V ¢b2) and ¢o = (Y1 = 2). Show that for every
propositional assignment z Mpr(¢1,2) = Mpr(¢2, z).

(iv) Choose your favorite set of well formed formulas and propositional
assignments and compute their respective value under Mpy, .

It is obvious from the definitions, that the function Mpy only depends
on finitely many values of z. The next proposition makes this precise.

3.1.26: Proposition (Finite dependency of the meaning function:)

Let ¢ € WFF be a formula with all its propositional variables in the set
{p1,p2, -, Pn}. Let z1 and zo be two propositional assignments such that
for every i <n z1(p;) = z2(pi). Then Mpr(¢,z1) = Mpr (¢, z2).

Proof. (by Induction):

Basis: If ¢ € WFF then ¢ = p; forsomei <nor¢ =T or ¢ =F. In all
these cases Mpy (¢, z) depends only on the value of z(p;) or is constant.
Closure: If ¢ € WFF, 1 and the proposition is true for all ¢1,¢2 €
WFF; i <n, we have four cases.

Let ¢ = (01 A ¢2). As Mpr((¢1 A ¢2),2) = TTA(Mpr(61,2), Mpr (2, 2))
and TTx does not depend on z, the proposition is also true for ¢.

The other cases are left to the reader. I

The above proposition allows us to associate with each well formed
formula ¢ € WFF a truth table 77 in the following way:

3.1.27: Definition (Truth table associated with ¢:)
Let ¢ € WFF and let p;,, i, ..., pi, be all the variables occuring in ¢. Let
TTy : {0,1}* — {0, 1} the truth table defined by

TTy(x1, 22, ..., 20) = Mpr(¢,2)

with z(p;;) = x; for j=1,2,...,n.

33

Let T7T be an n-ary truth table. The question arises whether there
exists a formula ¢ € WFF such that 77" = TT4 7 A positive answer to
this question, as 1t 1s the case, gives us a justification for the choice of the
basic truth tables (TTx, 7Ty, TT.) underlying the semantics of WFF.

3.1.28: Theorem (Functional completeness of the semantics for
WFF:)

Let TT be an n-ary truth table. Then there exists a formula ¢ € WFF
such that TT =TTj.

Proof. For n = 0 there are two constant truth tables.

For n > 0, let @ = (&1, 22,....,2,) € {0,1}" such that TT(z) = 1. Let ;
be p; if ; = 1 and —p; if ; = 0. Let Cy be the conjunction of all the I;,
Cy = ((--(li ANl2) Ao ALy). Now let ¢ be the conjunction of all the Cy

such that T7'(z) = 1. It is now easy to verify that 77, = TT. |

3.1.29: Definition (Semantics for WFFg:)

Let S = {s1,82,....,8n} be a set of symbols with arities n(s;) € N. For
each i < n let TT; be an n(i)-ary truth table. Let z be a propositional
assignement. We define a meaning function Mg inductively as follows:
Basis: Mg(T,z) =1, Mg(F,2) =0, Ms(ps, 2) = z(pi).

Closure: For every i < n with n(s;) = k and ¢1,¢2,..., ¢, € WFFg
Ms(si($1; @25 .5 0n), 2) = TT;(Ms (1), Ms(¢2), ..., Ms(¢x)).

3.2 Basic Semantic Concepts
3.2.1 Validity, Logical Equivalence and Logical Consequence

Validity, Logical Equivalence and Logical Consequence are fundamental
concepts of the semantics of formal languages in the most general sense.
We now introduce them for Propositional Logic, but the reader should have
in mind that they are really concepts about meaning functions.

3.2.1: Definition (Validity and Satisfiability:)

(i) We say that a formula ¢ € WFF is (logically) valid or a tautology
if for every propositional assignment z Mpr(¢,z) = 1.

(ii) We say that a formula ¢ € WFF is a contradiction if for every
propositional assignment z Mpr(¢,z) = 0.

(iii) We say that a formula ¢ € WFF is satisfiable if there is a proposi-
tional assignment z such that Mpr(¢,z) = 1.

(iv) We say that a set of formulas ¥ C WFF is satisfiable if there is a
propositional assignment z such that Mpr(¢,z) = 1 for every ¢ € X.
We abreviate this as Mpr (X, z) = 1. (Strictly speaking, we extend
the function Mpyp to the power set of WFF.)

34

3.2.2: Examples

(i) Show that ¢ is valid if and only if —¢ is not satisfiable.
(ii) Show that ¢ is a contradiction if and only if =¢ is valid.
(iii) Find an infinite set of valid formulas.

(iv) Find an infinite set of formulas which are contradictions.

(v) Find an infinite set of satisfiable formulas which are not valid.

3.2.3: Proposition—Exercise
Show that the following formulas ¢ € WFF are valid:

¢= (= (Y2 =) (1)

¢ = ((tr = (Y2 = ¥3)) = (Y1 = ¥a) = (Y1 = 3))) (i)
¢=(((1 = F) = F) =) (#i4)
3.2.4: Definition (Logical equivalence:)

We say that two formulas ¢1,¢2 are logically equivalent (semanti-
cally equivalent) if and only if for every propositional assignement z

Mpr(¢1,2) = Mpr (2, 2).

3.2.5: Examples

(i) Show that ¢ € WFF is valid if and only if ¢ is logically equivalent to
the formula T.

(ii) Show that ¢ € WFF is a contradiction if and only if ¢ is logically
equivalent to the formula F.

(iii) Show that ¢ € WFF is valid if and only if =¢ is logically equivalent
to the formula F.

3.2.6: Proposition—Exercise

(i) ¢ is a tautology if and only if TTy is the constant function with value
1.

(ii) ¢ is satisfiable if and only if there are 1, xa, ..., 2y € {0, 1} such that
TTy(x1,22,...,2,) = 1.

(iii) Two well formed formulas ¢, € WFF are logically equivalent if
and only if they have the same truth tables associated with them, i.e.
TTy =1Ty.

35

3.2.7: Proposition—Exercise
Show that the following pairs of formulas ¢1, ¢o are logically equivalent:
Commutativity:

b1 = (V1 Aa), ¢2 = (Y2 Ar); ()
1= (V1 V), 2= (Y2 Vr); (¢7)
Assoctativity:
¢1 = (V1 Aaba2) ANs3), b2 = (01 A (Y2 As)); (¢47)
¢1 = ((V1 Vb)) VUs), d2 = ((1 V (Y2 V ¢3)); (iv)
Distributivity:

o1 = ((h1 Naba) Vb)), da = ((1h1 V bs) A (2 V 1b3)); (v)
o1 = ((h1 Vaba) Nabs), da = (11 ANabs) V (b2 A ibs)); (vi)

De Morgan’s laws:

¢1==(1 A2), ¢2= (m1 V ¢a); (vid)
¢1==(1 Viba), ¢2=(m¢1 A ¢a); (viii)

Double negation:
o1 =", g2 =0 (1)

3.2.8: Definition (Logical consequence:)

Let ¥ be a (possibly infinite) set of well formed formulas in WFF, and
let ¢ € WFF. We say that ¢ is a logical (semantical) consequence of X
or alternatively ¥ logically (semantically) entails ¢ if and only if for every
propositional assignement z such that Mpp(X,z) = 1 we have also that
Mpr(¢,2) =1. We write & |= ¢ for ¥ entails ¢.

3.2.9: Examples

(i) Show that ¢ is valid if and only if the empty set O entails ¢, i.e.
b ¢

(ii) Show that {¢} = ¢; and more generally, that if ¢ € X, then ¥ = ¢.
3.2.10: Proposition—Exercise

The following are some simple but useful properties of the logical relation
consequence:

36

(i) (False implies everything) For every ¢ € WFF we have that {F}
¢;

(ii) For every ¢, v € WFF {¢} = ¢ iff (¢ — ¢) is a tautology;
(iii) (Modus Ponens) For every ¥, ¢, ¢ we have that XU{¢, (¢ — ¥)} E ¢.

(iv) (Monotonicity) If ¥ C ©1 C WFF, ¢ € WFF and ¥ |= ¢ then also
¥ E e

(v) (Consequence) X = (¢ = o) iff TU{¢} E ¢.

In the following we sketch a semantic decision procedure for the logical
consequence. It 1s called semantic, because it resorts to the truth tables
associated with the formulas involved. A syntactic decision procedure is
a decision procedure whose only data used are the formulas themselves.
Syntactic decision procedures will be discussed in a later section.

3.2.11: Theorem (Semantic decision procedure for logical conse-
quences:)

Let X be a finite set of well formed formulas in WFF and ¢ € WFF.
There is a decision procedure which decides whether ¥ = ¢.

Proof. First we observe that X |= ¢ iff for every XU{—¢} is not satisfiable.
Let X{41,...,¢n} Let TT be the truth table for (A,_, i — ¢). By
proposition 3.1.26 this truth table is well defined and finite. ¥ | ¢ ifft TT

is constant with unique value 0.

3.2.12: Exercise

Generalize the notions tautology, logical equivalence, logical consequence,
truth table associated with a formula, functional completeness to WFF ¢
with semantics given by arbitrary truth tables and find examples and counter
examples for these generalized notions.

We end this subsection with some additional exercises.

3.2.13: Exercises
Let k € N. We define WFF(k) to be the set of formulas ¢ € WFF

containing only the variables py,pa, ..., pk-
(i) Count the number of distinet formulas in WFF (k).

(ii) Count the number of formulas in WFF (k) which are pairwise logi-
cally not equivalent.

(iii) How long is the longest sequence of formulas ¢1,¢a,...,6n €
WFF (k) such that for every i < n we have that ¢; = ¢i41 but

div1 I @i

37
3.2.2 Substitution

The purpose of this subsection is to give a precise definition of what we
mean by replacing or substituting variables by formulas and replacing or
substituting subformulas by other formulas.

3.2.14: Definition (Substitution of variables:)

Let ¢ € WFF be a well formed formula. Let s : Var — WFF be a function
assigning to each propositional variable p;, 1 € N a well formed formula. s
15 called a substitution function. We define inductively a function subst :
WFF x WFFY* — WFF. subst(¢, s) is the formula obtained from ¢
and s by replacing all the variables p; in ¢ simultaneously by s(p;).
Basis: subst(p;,s) = s(p;), subst(F,s) =F, subst(T,s) =T.

Closure: If ¢, ¢1, ¢2 € WFF then

(i) subst((¢1 A ¢2),8) = (subst(¢1,s) A subst(¢a,s));

(ii) subst((¢1 V ¢2),s) = (subst(¢1,s) V subst(¢a, s));

(iii) subst((¢1 — ¢2),s) = (subst(¢1,s) — subst(¢pa,s));

(iv) subst(—¢, s) = —subst(¢, s).

3.2.15: Examples
Make your own examples for s,¢ and compute subst(e,s).

3.2.16: Proposition—Exercise (Finite dependency of substitution:)

Let ¢ € WFF be a formula with all its propositional variables in the set
{p1,p2, -, Pn}. Let s1 and sy be two substitulion functions such thatl for
every i < n s1(p;) = s2(pi). Then subst(¢, s1) = subst(¢, s2).

3.2.17: Proposition—Exercise

(i) Let ¢ € WEFF be not satisfiable and s be a substitution function.
Then subst(¢, s) is not satisfiable.

(ii) Let ¢ € WFF be a tautology and s be a substitution function. Then
subst(¢, s) is a tautology.

(iii) Let ¢ € WFF | z € Ass an assignment and s a substitution function.
Define the assignment 2 € Ass by 2'(p;) = Mpr(s(ps),z). Then
Mpp (9,2 = Mpy (subst(¢, s), z).

3.2.18: Exercise

Visualize for yourself the effect of substitution on ¢ when ¢ is considered
as a tree.

We shall also define substitution for subformulas rather than
for variables.

38

3.2.3 Normal Forms

This subsection introduces several normal forms of well formed formulas. In
general, a normal form of a formula ¢ € WFF 1s a formula ¢ € WFF which
is equivalent to ¢ and whose syntax is constraint by certain limitations such
as

(1) negation symbols are only permitted if they occur immediately before
a variable (negational normal form);

i1) when building a formula, conjunctions are applied last (conjunctive
g
normal form), or

(iii) when building a formula, disjunctions are applied last (disjunctive
normal form).

In the following we make this precise. The purpose of this subsection
is twofold: Tt gives us many examples of equivalent formulas and it pro-
vides us with preprocessing techniques which are the basis for our further
development.

3.2.19: Definition (Negational Normal Form:)

We define a subset NNF C WFF nductively as follows:

Basis: The variables p; and their negations —p; are in NNF. F T €
NNF.

Closure: If ¢, € NNF so are (¢ A) and (¢ Vo).

3.2.20: Remark
Note that formulas in NNF do not contain the symbol —. As ¢ — ¢ is
logically equivalent to —¢ V ¢ formulas containing — ‘somehow’ contain a
‘hidden’ negation.

3.2.21: Examples
((p1 A=p2) V (=ps V F)) is in NNF but
((p1 A—p2) V (mp2 = F)) and ((p1 A —p2) V o(—p2 V F)) are not.

3.2.22: Theorem (Negational Normal Form:)
For every formula ¢ € WFF there is a formula ¥ € NNF such that:

(i) ¢ is equivalent to ¢ and
(ii) ¢ and ¢ have the same variables.

Proof. We define a procedure (function) mvin : WFTF — WFTF in-
ductively. The procedure consists of transforming the tree presentation of
a formula by moving the negations to the leaves while preserving logical
equivalence. By abuse of notation we shall write nevertheless ¢ instead of
Ty, the tree obtained from ¢ by the Unique Readability Theorem.

Basis:

39
(1) mwin(p;) = pi, mvin(F) = F, mvin(T) = T.
(i) muin(-p;) = —p;, mvin(-F) = T, mvin(-T) = F.
Closure:
(i
(il

muin(—=¢) = muvin(¢);

muin((¢1 A ¢2)) = (mvin(é1) A mvin(¢s));
(i) mvin((¢1V ¢2)) = (mvin(¢1) V mvin(¢z));
muin((¢1 = ¢2)) = (mvin(=¢1) V mvin(¢2));
muin(=(¢1 A ¢2)) = (mvin(=¢1) V muvin(=¢s));
muin(=(¢1 V ¢2)) = (mvin(=¢1) A mvin(=¢s));

As muin is defined for WFTF rather then WFF it is well defined and it is
easy to verify (cf. Proposition 3.2.7) that logical equivalence is preserved.

(iv

(v

(vi

)
)
)
v)
)
)

3.2.23: Definition (Conjunctive and Disjunctive Normal Form:)
We define subsets CNF, DNF C WFF inductively in two stages as fol-
lows. We first define DISJ, CONJ C WFF:

Basis: The vartables p; and their negations —p; are both in DISJ and
CONJ. F,TeDISJ. F,T € CONJ.

Closure: If ¢, € DISJ so is (¢ V ¢)).

If ¢,9p € CONJ s0is (¢ At).

Now we define CNF, DNF C WFF:

Basis: DISJ C CNF. CONJ C DNF.

Closure: If ¢,v € CNF so is (¢ A).

If ¢,9 € DNF s0 is (¢ V).

3.2.24: Examples
((p1 V =p2) A (mp2 VF)) is in CNF but ((p1 V —p2) A (-p2 = F)) and
((p1 A—p2) V =(—p2 VEF)) are not.

3.2.25: Theorem (Conjunctive Normal Form:)

For every formula ¢ € WFF there is a formula i € CNF such that:
(i) ¢ is equivalent to v and

(ii) ¢ and ¢ have the same variables.

Proof. The proof is similar to the proof of the Negational Normal Form
Theorem. We define inductively a function mvout whose domain is the set
of tree presentations of formulas in NNF which gives the tree presentation
of the desired formula in CNF.

Basis:

40

If ¢ € CNF then mvout(¢) = ¢.

Closure: Assume ¢, ¢1, ¢o are in CNF.

(1) movout((¢ V (@1 A ¢2))) = (mvout((¢ V ¢1)) A mvout((¢ V ¢2)));
(i1) moout(((¢1 A ¢2) V ¢)) = (muout((¢1 V ¢)) A muvout((¢2 V ¢)));

The remaining details are left as an exercise. I

3.2.26: Remark
Note that the construction in Theorem 3.1.28 qives for any truth table T'T a
1 € CNF. This can be exploited for an alternative proof of Theorem 3.2.25.

3.2.27: Proposition—Exercise (Disjunctive Normal Form:)
For every formula ¢ € WFF there is a formula 1 € DNF such that:
(i) ¢ is equivalent to v and

(ii) ¢ and v have the same variables.

3.3 Deduction Methods and Compactness

In this section we present to methods of deduction: proof sequences (or
Hilbert style deduction) and resolution (popular in Artificial Intelligence
and Automated Theorem Proving). The first is supposed to model human
reasoningr. This is an exageration: In the best case it models the way
mathematicians and other scholastically educated people write down their
arguments, when pressed to do so. In short, it models a stylized form of
human reasoning. In this sense it is user friendly. In contrast to this,
resolution is more fit for machine implementations, and in this sense it is
more machine friendly.

3.3.1 Proof Sequences

In this subsection we want to characterize the notion of logical consequence
syntactically. To keep things simple we restrict ourselves to the case of
propositional formulas in WFF;_, gy C WFF .

3.3.1: Definition (The axioms:)
For every ¢,v,0 € WFF[_, 7y

(i) (6= (¥ —9))
() (¢ = (= 0)) = (6 = ¥) = (6 = 0)))
(iii) (((¢ = F) = F) =)

3.3.2: Definition (Deducible formulas:)
Let ¥ C WFF_, gy be a set of formulas. We define inductively the set
Ded(X) as follows:

Basis:

41
(i) 5 C Ded();
(it) If ¢ € WFF_, g} is an aviom then ¢ € Ded(X).

Closure: (Modus ponens)
If ¢ € Ded(X) and (¢ —) € Ded(X) then ¢ € Ded(X).

Ded(%) will turn out to be an inductive definition of the logical conse-
quences of Y. First we state:

3.3.3: Proposition—-Exercise (Soundness of Ded(X):)
Let ¥ C WFF_, g} be a set of formulas and ¢ € WFF_, m. If ¢ €

Ded(X) then ¥ | ¢.

3.3.4: Examples
Prove the following statements:

(1) Ded(0) is a subset of the tautologies of WFF[_, g}.
(ii) Ded({F}) = WFF . m

(iii) Let ¥ be infinite and ¢ € Ded(X). Then there is a finite subset
Yo C X such that ¢ € Ded(Zg).

To show that a formula ¢ € Ded(X) one has to unwind the inductive
definition of Ded(X). Such an unwinding will be called a proof sequence.
More precisely:

3.3.5: Definition (Proof sequences:)

Let ¥ C WFF{_, 7y be a set of formulas and ¢1,...,¢, be formulas in
WEFF_, gy We say that é1,...,éy is a proof sequence over X of for each
1 < n either

(i) ¢; is an azviom or ¢; € L or

(ii) (Modus ponens) there are k,l < i such that ¢; = (¢ — ¢i)

We write X = ¢ of there s a proof sequence ¢1, ..., ¢, over X such that
¢n = ¢

3.3.6: Proposition—Exercise

Let ¥ C WFF_, gy be a set of formulas and ¢ € WFF_, g. Then
¢ € Ded(X) iff L+ ¢.

3.3.7: Corollary (Soundness of proof sequences)

Let ¥ C WFF_, 7y be a set of formulas and ¢ € WFF |,). IfX F ¢
then ¥ = ¢.

3.3.8: Exercise

Show the following statements:

42
(i) If 0 F ¢ then ¢ is a tautology.
(it) For every ¢ € WFF_, gy we have that F = ¢.

(iii) Let ¥ be infinite and X & ¢ there is a finite subset Ly C ¥ such that
Yo b 6.

3.3.9: Definition
We say that ¥ C WFF_, g} s inconsistent of ¥ & F. [If X is not incon-
sistent, we say that X is consistent.

3.3.10: Remark
Note, by the soundness of proof sequences, that if 2 is inconsistent, then X
1s not satisfiable.

3.3.2 Manipulations of Proof Seequences
The following are useful properties for the manipulation of proof sequences.

3.3.11: Proposition—Exercise
Let ¥o C X C WFF_, g} be a set of formulas and ¢ € WFF(_, gy.

(i) If So b ¢ then S+ ¢;

(ii) If ¢1,¢2,...,¢n is a proof sequence over ¥ then for each i < n we
have that ¥+ ¢;.

(iii) If S F ¢ and T+ (¢ =) then T F ¢.
(iv) IfXF (¢ = (0 =) and X+ (¢ — 0) then TF (¢ = o).

3.3.12: Proposition (Deduction Theorem)
Let ¥ C WFF_, gy be a set of formulas and ¢,y € WFF_, g).

LE(o =) ff SU{e} k4.

Proof. (i) Assume X F (¢ —). We have to prove that XU {¢} F ¢. By
proposition 3.3.11 (i) above we have X U {¢} F (¢ = ¢) and, using modus
ponens, XU {¢} F .

(i) Assume TU{¢} F ¢». We have to show that ¥ F (¢ —). Equivalently,
we can show that (¢ — ¢) € Ded(X). Let K C Ded(XU{¢}) be the set of
formulas ¢ such that ¥ F (¢ =). We show that K = Ded(X U {¢}).
Basis: ¥ C K and all the axioms are in K (Exercise). In the case that
¥ = ¢ we use that 0 (¢ — ¢).

Closure: Assume § and (§ — ¢) are in K. We have to show that ¢ € K.
By assumption X F (¢ — 0) and ¥ F (¢ — (0 — ¢)), therefore, by

proposition 3.3.11 (iv), F (¢ — ¢).

43

3.3.13: Proposition—Exercise (Dychotomy Theorem)
Let ¥ C WFF_, gy be a set of formulas and ¢,y € WFF_, g).
If both XU {¢}t F ¢y and TU{(¢p = F)} F ¢ then T+ .

Hint for proof. Use the Deduction Theorem to prove

(=), (0 =0} F (6 —0)

Then use this to prove the following three tautologies:
(¢ =) = (¥ = F) = (¢ = F)))

(¢ = F) = ¢) = (¢ = F) = ((¢ = F) = F)))

(¢ = F) = ((¢ = F) = F) = (¢ = F) = (¢ = F)) = ¢))

Then use these three tautologies and Modus Ponens to prove the Dy-
chotomy Theorem. I

Proof sequences capture the essence of proofs and can be used for similar
formulas in the following sense:

3.3.14: Proposition—Exercise
Let ¥ ¢ and s : Var — WFF lbe a substitution. Then

{subst(y,s) 1 € T} I subst(¢, s).

3.3.3 Completeness and Compactness

The following shows that the method of proof sequences is sufficiently pow-
erful to obtain all tautologies, or, more generally, all logical consequences
of a given set of formulas.

3.3.15: Theorem (Completeness Theorem for Deductions)
Let ¥ C WFF_, 7y be a set of formulas and ¢ € WFF_, g;.
IfY = ¢ then T+ 6.

To prove this theorem we need a definition and two lemmas.

3.3.16: Definition (Maximally consistent set)
A set X of WFF is maximally consistent if it is consistent, and for every

¢ € WFF cither ¢ € X or ¢ € 2.

3.3.17: Lemma (Maximally consistent extensions)
Let ¥ C WFF be a consistent. Then there is a mazimally consistent ¥*
such that ¥ C .

44

T. he proof is in stages:

(1) Assume now, that X is consistent. Let {¢; : ¢ € N} be an enumeration
of the formulas in WFF_, g. We define in stages a set ¥, C WFF_, ¢
in the following way:

Eo = E,

Yot1 = U{gn} if Xy U{@y,} is consistent, and X1 = B, U{(¢p — F)}
otherwise.

Y, =U{Z i e N}

(ii) For every ¢ € N we use the Dychotomy Theorem to show that X; is
consistent.

(iii) X, is consistent. For otherwise, there are formulas {¢1,..., ¢y} such
that {¢1,..., ¢} £ F. Then there is m € N such that ¢, ... ¢, F € ¥,
and therefore, ¥, is inconsistent, contrary to (iv).

(iv) X, is a maximally consistent extensions of X, i.e. for every ¢ €
WFF_, g} either ¢ € ¥, or) € X,. As {¢; : 7 € N} is an enumeration
of the formulas in WFF_, gy, ¥ = ¢, for some n € N. Therefore ¢ € X,
or 7 € Y.

Now we put X©* = ¥, which completes the proof. I

3.3.18: Remark

Note that different enumerations of WFF[_, gy give different sets ¥, for
the same Y. In general for countable X2 there are 2¥ maximally consistent
exrtensions.

3.3.19: Lemma (Assignment for maximally consistent set)
Let ¥ C WFF be mazrimally consistent. Then there is an assignment
z:Var = {0,1} such that Mpr (X, z) = 1. In other words, ¥ is satisfiable.

T. he proof is in stages:

(1) We first define a propositional assignment z : Var — {0, 1} for X in the
following way: z(p;) = 1 iff p; € £. As ¥ is maximally consistent, this is
well defined.

(i1) All we need to show now, is that Mpr (¢, z) = 1 iff ¢» € . This we do
by induction for every ¥ € WFF_, gy. For ¢ atomic this follows from the
definition of z. Assume we have shown it for ¢3 and ¢ = (¢ — ¢2). Then
Mpr(¥,2) = 1iff Mpr((¢¥1 — 42),2) = Mo (Mpr (1, 2), Mpr(¥2,2)) =
1. By the induction hypothesis Mpy(¢1,2) = 1 iff ¢4 € . So assume,
for contradiction, that Mpr (¥1,2) =1, Mpr(¢2,7z) = 0 and ¢ € ¥. Then
1, (Y2 = F), ¢ are all in X, which contradicts the consistency of 3.
Conclusion: Mpr(X,z) =1, and as ¥ C X, Mpr(X,z) = 1 which shows

that X 1s satisfiable.

Proof of theorem 3.3.15. The proof is in several stages.
(1) (Exercise) First we observe that it suffices to prove that if ¥ consistent

45

then X is satisfiable. For this we use the Deduction Theorem.

(ii) By the soundness of proof sequences, if ¥ is satisfiable, then X is con-
sistent.

(iii) Assume now, that ¥ is consistent. So there is ¥* maximally consistent

with ¥ C ¥* by lemma 3.3.17. But X* is satisfiable by lemma 3.3.19. I

3.3.20: Remark

The above proof of the completeness theorem is mathematically very el-
egant, but hides the construction of proof sequence, whose existence we
show. This proof method was independently suggested by L.Henkin (1949),
Hasenjaeger and J. Hintikka (both before 1950 too). The actual construction
of proof sequences is the topic of courses in Automated Theorem Proving
or wn Textbooks on Logic prior to 1960.

3.3.21: Corollary (Compactness Theorem)
Let X C WFF [, g be an infinile set of formulas. X is satisfiable iff every
finite subset Xy C 3 1s satisfiable.

Proof. By the completeness theorem above ¥ is satisfiable iff ¥ is con-
sistent. Clearly, if X is consistent, so is every finite subset ¥, C X.
Conversely, assume X is inconsistent. Therefore there is a proof se-
quence ¥1,...,%s, F € X, which shows the inconsistency, and therefore,

{1, ..., ¢, F} C X is a finite inconsistent subset. |

3.3.4 Resolution

In this subsection we introduce a syntactic method of checking whether a
set of formulas X is satisfiable called resolution. Resolution is a machine
friendly method which involves some preprocessing transforming the set
Y. C WFF into a set clause(X) of clauses.

3.3.22: Definition (Clauses:)

(i) A literal is a well formed formula which is either a propositional
variable, p;, or the negation of a propositional variable, —p;. The
constant F 1s also a literal. We denote literals by [;.

(ii) A clause is a finite set of literals {l1,1s, ...,l;;}. We denote clauses by
C;. We denote the empty clause (the empty set of literals) by O.

(iii) Let z be a propositional assignment. The meaning function Mejqyse
for clauses is defined inductively as follows:
Basis: Mclause({lj}a Z) = MPL(lj, Z) Mclause(Da Z) =0.
Closure: Meause({l1,12, ..., I}, 2) = mae{Meiquse({l;}, 2) 1 § < k}.
If S is a set of clauses Mequse (S, z) = min{Meiquse(C,z) : C € S}.

46

(iv) Let ¢ € CNF be formula in conjunctive normal form. We define a
set clause(¢) of clauses inductively as follows:
Basis: clause(p;) = {p:}. clause(—p;) = {-p;}. clause(F) = {O}.
Closure:
(1) If clause(¢1) = {C1} and clause(¢2) = {Ca} then clause(¢gr V
$2) = {C1 U Ca}.
(2) clause(p1 A ¢2) = clause(¢1) U clause(¢z).
(3) If ¥ C CNF is a set of formulas in conjunctive normal form then

clause(X) = [J{clause(¢) : ¢ € X}.

(v) If ¥ C WEFF is a set of well formed formulas (not necessarily in
conjunctive normal form) then clause(X) = (J{clause(enf(¢)) : ¢ €
Y}, Here enf(¢) denotes a formula in CNF logically equivalent to

3.3.23: Proposition—Exercise
(i) Let X € WFF be a set of well formed formulas and z be a proposi-
tional assignment. Then

Mpr, (Ea Z) = Mclause(Clause(E), Z)

(ii) In particular ¥ is satisfiable if and only if there is a propositional
assignment z such that Meguse(clause(X), z) = 1.

3.3.24: Definition (Resolution trees:)

(i) Let Cy U {p;},Cy U {—p;} be two clauses. We say that the clause
C1UCYy is obtained from C1U{p;}, CoU{=p;} by one resolution step,

and we write
CiU{p;},CoU{—p;}
ChLuCy

(ii) A resolution tree T is a binary (directed) labeled tree T = (V, E') such
that the labels of V' are clauses and if C'y, Cy are labels of the two sons
of a vertex labeld with C' then C1 = D1 U{p;}, Co = Dy U{—p;} and
C = D1 UDs. In other words, the label of the father is the result of
performing a resolution step on the labels of its two sons. Note that
several vertices may carry the same label.

(iii) Let S be a set of clauses and C be a clause. We say that S proves C
by resolution, if there is a resolution tree with the root labeled C' and
all the leaves labeled with clauses from S. We write S Fos C for S

proves C' by resolution.

3.3.25: Examples

47
(i) Draw a resolution tree for S Fpes O for
S ={pi} Ap2} {=p1, —p2}}
(ii) Draw a resolution tree for S Fpes O for

S = {{Pl,])z,ps}, {—'Pl,pz}, {—'Ps,Pz}, {“pz}}~

The next proposition establishes that resolution steps preserve the
meaning of the clauses on which they are based. We call this the soundness
of resolution steps. More precisely:

3.3.26: Proposition (Soundness of Resolution:)

(i) Let S be a set of clauses and Cy U {p;},Co U {—p;} € S. Let z
be a propositional assignment such that Meguse(S,2) = 1. Then
Meiguse(SU{CLUCo},2) = 1.

(ii) LetT be a resolution tree and Sy be the set of clauses which are the la-
bels of its leaves and S the set of all its labels. Let z be a propositional
assignment such that Meiguse(So, 2) = 1. Then Meguse(S,z) = 1.

(iii) If S is a set of clauses such that S s O then S is not satisfiable.

Proof. We prove only (i). To prove (ii), we can proceed by induction on
the depth of the tree applying (i) as the induction step. (iii) is a direct
consequence of (i).

So let C1 U {p;},CoU{=p;} € S be two clauses and z be a propositional
assignment such that Meguse(S U {C1 U {p;},CoU {-p;}},2z) = 1. We
have to show that M jgyse(S U {C1 U Cq},z) = 1. Tt suffices to prove the
case where z(p;) = 1, as the case z(p;) = 0 is similar. Now z(p;) = 1
implies that Mejguse (Ca, z) = 1 and therefore Meyguse(C1 U Ca,z) = 1. As
Meiguse (S, z) = 1 we also have Mejqyse (S U{C1 UCL} z) = 1.

this completes the proof of (i). |

We would like to state a completeness theorem for resolution. The
obvious formulation would be that for a set of clauses S and a clause C'
we have that S .., C iff C' 1s a logical consequence of S. The following
example shows that this is not true:

3.3.27: Example
Let S be {{po}} and C be {pg,p1}. Clearly C is a logical consequence of S
but there is no resolution step applicable given S only.

The best we can hope for is the following:

3.3.28: Theorem (Completeness of Resolution for Satisfiability)
Let S be a set of clauses. S is not satisfiable iff S Fpes O.

48

Proof. This will follow from the Compactness Theorem and the Complete-

ness of the Davis—Putnam Procedure, below.

3.3.29: Definition (Davis—Putnam Procedure)

Let S be a finite set of clauses. Without loss of generality let py, ..., p, be
all the variables occuring in S.

We define inductively sets of clauses S;, Sj(pos), S;(neg), S;(—) for j =
0,...,n as follows:

0= 57

j(pos) ={C € 5j:pj € C},

Sj(neg) ={C € 5j : ~p; € C'},

Si(=)={C€S; :pj & C and ~p; C},

Sj+1 = Si(=) U{CUD : CU{p;} € Sj(pos), DU {-p;} € Sj(neg)}.

3.3.30: Lemma
For every j =0,...,n S; ts satisfiable iff S;11 s satisfiable.

W

[y

Proof. If S; is satisfiable then S;;, is satisfiable, by the soundness of
resolution. So let us assume that S;1 is satisfiable by a truth assignment
z. Let z; be the truth assignment obtained from z by putting z1(p;) =
1—2(pj). An easy computation shows that if neither z nor z; satisty S; then
there are clauses C, D with CUD € {CUD : CU{p;} € S;(pos), DU{-p;} €

Sj(neg)} and Meiguse(C'U D, z) = 0, contradiction.

3.3.31: Lemma
Sny1 1s either empty or contains only the emptly clause. Furthermore, Sp41
1s empty iff S is satisfiable.

Proof. Exercise. I

3.3.32: Theorem (Completeness of the Davis—Putnam Procedure)

A finite set of clauses S is satisfiable iff the Davis—Putnam Procedure re-
turns the empty set.

Proof. Use the lemmas. I

3.3.33: Remark (Complexity of Resolution)

The Davis—Putnam Procedure seems rather crude and may need an exrpo-
nential number of resolution steps. Its performance is also sensitive to
the numbering of the vartables. However, it was shown in a sequence of
papers (Tseitin, Galil, Haken, Urquhart, Szemeredi) that there are many
sets of n clauses S which are unsatisfiable and which need an exponential

49

number of resolution steps to discover the unsatisfiability. In the case of
average complexity the situation is more complex as it depends on the input
distribution for clauses. There are quite natural distributions for which res-
olution is polynomual on the average, and others, equally natural, for which
resolution is exponential on the average.

3.4 Compactness
3.4.1 A Semantic Proof of Compactness

As a corollary to the Completeness Theorem we stated the Compactness
Theorem. We now give a more general version with a semantic proof, which
is structurally very similar to the proof of the Completeness Theorem.

3.4.1: Definition
Let X C WEFF be an infinite set of formulas (even uncountable). We say
that % 1s finitely satisfiable if every finite subset ¥y C X is satisfiable.

3.4.2: Exercise

Let X C WFF be an infinite set of formulas (even uncountable) and ¢ €
WPFF. Assume that neither XU {¢} nor T U {—~¢} are finitely salisfiable.
Then X 1s not finitely satisfiable.

3.4.3: Theorem (Compactness Theorem)
Let ¥ C WFF be an infinite set of formulas (even uncountable). T is
satisfiable iff X 1s finitely satisfiable.

Proof. The proof is in stages. Here we prove only the countable case.
The uncountable case will be dealt with in an exercise in the section on
well-orderings.

(i) Clearly, if ¥ is satisfiable, then X is finitely satsifiable.

(ii) Assume now, that ¥ is finitely satisfiable. Let {¢; : ¢ € N} be an
enumeration of the formulas in WFF. (For uncountable ¥ we would use
some well ordering of the formulas). We define in stages a set ¥, C WFF
in the following way:

Eo = E,

Yot1 = U g, Hif X, U{6, } is finitely satisfiable, and ¥,, 11 = X, U{—¢,}
otherwise.

Yo = U{Ez 11 E N}

(iii) For every i € N we use the exercise above to show that X; is finitely
satisfiable.

(iv) Xy is finitely satisfiable. For otherwise, there is a finite X C X which
is not satisfiable. Then there is m € N such that X C ¥,,, and therefore,
¥, is not finitely satisfiable, contrary to (iii)

(v) ¥, is a maximally finitely satisfiable extensions of X, i.e. for every
¥ € WFF either ¥ € X, or -¢p € X,,. As {¢; : i € N} is an enumeration

50

of the formulas in WFF we have that ¢ = ¢,, for some n € N. Therefore
W E X, or) € X,

(vi) We now define a propositional assignment z : Var — {0,1} for X,
in the following way: z(p;) = 1 iff p; € X. As X, is maximally finitely
satisfiable, this is well defined.

(vii) All we need to show now, is that Mpyr (¢, 2) = 1 iff ¢ € X, for every
¥ € WFF. This we do by induction: For i atomic this follows from the
definition of z. Assume we have shown it for ¢; and 2. If ¥ = (1 A ¢2),
then Mpyp (¢, 2) = Mpr((¢1 Atb2),z) = MA(Mpr (Y1, 2), Mpr (22, 2)) = 1
iff both 4, and - are in X,. By the fact that X, is maximally finitely
satisfiable this is the case iff ¢» € X,,. The cases for ¢ = (¢1 V ¢2), ¢ =
(1 — o) and ¢ = (—¢)1) are similar and left as an exercise.

Conclusion: Mpr(Ew,z) =1, and as ¥ C X, Mpr (X, z) = 1 which shows

that X 1s satisfiable.

3.4.2 Applications of Compactness: Definability

In this subsection we show some applications of the Compactness Theorem.
For this we need some more definitions:

3.4.4: Definition (Definability)

(i) Let ¥ be a set of formulas in WFF. Let Ass(X) be the set of truth
assignments z € Ass such that Mpr (X, z) = 1. Note that Ass(T) =
Ass, the set of all truth assignments.

(ii) Let K be a subset of Ass. We say that K is definable in WFF if
there is a set ¥ of formulas in WFF such that K = Ass(X).

(iii) A set K of truth assignments is finitely definable if there is a finite
Y such that K = Ass(X).
3.4.5: Examples

(i) Let Ky be the set of truth assignments z such that z(po) = 1. Then
Ko = Ass(po), and therefore is definable.

(ii) Let Ky be the set of truth assignments z such that z(p;) = z(pa;) for
every i € N. Then K1 = Ass(X1), for ©1 = {((p; = pai) A (p2i —
pi)) 1 i € N}, and therefore is definable.

(iii) If K = Ass(X) and K' = Ass(X') , then KNK’ is definable by TUY.

(iv) If K = Ass(X) and K' = Ass(X') , is K U K’ definable by {¢ V ¢ :
peX, veX?

(v) Let K = Ass(X) and K' = Ass(¥'), what can you say about Ass(XN
Y2 Study several special cases.

51
(vi) If £ C X' then Ass(X') C Ass(X).

(vii) Let Kt be the set of truth assignments z such that z(p;) = 1 for
every i € N. Note that Kt has exactly one element and s definable
by {p; : i € N}. (FEzercise: Show that Kt is not definable by any
finite set X2 of formulas in WFF, as in such a X there are only finitely
many variables.)

(viii) If K = Ass(X) for some finite &, then the complement K' = Ass\ K
is also definable. (Exercise: Describe X' which defines K'.)

3.4.6: Proposition

(i) Let K be a definable set of truth assignments such that Ass\ K is
also definable, i.e. let K = Ass(X) and let Ass\ K = Ass(X'). Then
there is a finite subset Tg C ¥ such that K = Ass(Xo).

(ii) Let K be a set of truth assignments. K is finitely definable iff both
K and its complement are definable.

Proof. (i) By assumption and (iii) above K N K’ = § = Ass(X U X').
Therefore ¥ U Y is not satisfiable. By the Compactness Theorem there is
a finite subset ¥; C ¥ U X' which is not satisfiable. Let ¥y = X N %;. By
(vi) above, we have K C Ass(Xg). To show that Ass(Xg) C K it suffices to
show, that Ass(X¢) N (Ass \ K) = §. But, as X, is not satisfiable, neither
is o UX/ because X C Xo U Y.

(i1) follows from (i) and (viii) above. |

3.4.7: Exercises

(i) Show that Ass\ Kt is not definable.

(ii) Let Keyen be the set of truth assignments z such that z(pa) = 1 for
every ¢ € N. Show that Keyepn s not finitely definable.

The following was not presented in the course:
3.4.8: Definitions

Let K be a set of truth assignments.

(i) We say that K does depend on a variable p; if there are truth assign-
ments z and 7z’ which only differ for p;, i.e. with z(p;) = 2'(p;) for
every j # 1, such that z € K and 2’ ¢ K.

(ii) Let Support(K) be the set of variables on which K depends.

52
(iii) We say that K has finite support if Support(K) is finite.

(iv) Let ¥ be a set of formulas in WFF. We say that ¥ is satisfiable over
K if there is a truth assignment z € K such that Mpp(X,z) = 1.

3.4.9: Examples

(i) If K is finitely definable, then K has finite support.

(ii) Keyen does not have finite support.

3.4.10: Proposition (Finite Support)
Let K be a set of truth assignments. K is finitely definable iff K has finite
support.

Proof. By (i) in the example above, if K is finitely definable, then K has
finite support. So assume, K has finite support. Then it suffices to describe

the truth table describing K on the variables of Support(K). |

3.4.3 Truth Table Extensions of Propositional Logic

In this subsection we consider extensions of propositional logic by infinitary
connectives. Let (), be a new symbol.

3.4.11: Definition (Syntax of WFF(()))

The set of infinitary formulas WFF((D) is defined inductively as follows:
Basis: WFF C WFF(()).

Closure:

(i) If ¢ and ¢ are in WFF((), so are (¢ A) (¢ V), and —¢.

(11) If ¢; are in WFF((Q) fori € N, then (o @i 15 in WFF(().

3.4.12: Definition (K-semantics for WFF(()))

Let K be a set of truth assignments and z : Var — {0, 1} be a truth assign-
ment. We define the meaning function Mg (¢, z) for formulas in WFF(())
inductwely as follows:

Basis: If ¢ € WFF then Mg (¢,z) = Mpr(¢, z).

Closure: (i) Mg ((¢1 A ¢2),2) = TTA(Mg (61), Mg ($2));

(1) Mg ((¢1V ¢2), 2) = TT (Mg (¢1), Mk (¢2));

(iir) Mk (1 — ¢2),2) = TT, (MK (¢1), Mk (62));

() Mg (=¢,z) = TT- (Mg (¢));

(v) MK(@iEN éi,2) =1 4ff 2 € K for 2(p;) = Mg (i, 2).

3.4.13: Examples

(i) For K = Kt this defines an infinite conjunction. In this case we

denote) by A.

53

(ii) For K is the set of truth assignments with at least one value 1 this
defines an infinite disjunction. In this case we denote (&) by \/.

3.4.14: Exercise
Define the notions satisfiable, valid, logical consequence, etc. for

WEFF((®) with the K-semantics.

3.4.15: Definition (Compact Propositional Logic)

Let K be a set of truth assignments. We say that K is compact if
WEFF(() with the K-semantics is compact, i.e. for every set ¥ of
WEFF((), X is satisfiable under the K-semantcis iff every finite subset
Yo C X is satisfiable under the K-semantics.

3.4.16: Examples

(i) If K is finitely definable in
WFF then K s compact.

(ii) Kt is not compact.

(iii) Kepen is not compact.

3.4.17: Theorem (Friedman’s Theorem)
Let K be a set of truth assignments. The following are equivalent:

(i) K is finitely definable in WFF;
(ii) K is of finite support;

(iii) K is compact.

Proof. (i) = (4i) is (i) in the example above. (ii) = (i) is the Fi-
nite Support Theorem of the previous subsection. So we are left to prove
(iii) => (if).

Let ¢ be the formulas @iEN pa; and ¥ be the formulas — @iEN pait1. Let
Y be the set of formulas {((p2; = p2s+1) A (P2s41 = p2i)) 11 € N}

By assumption WFF(()) is compact in the K-semantics.

Claim 1: {¢, ¢} UX is not satisfiable in the K-semantics.

Assume, for contradiction, that z is a truth assignment satisfying {¢, ¥ JUX.
Let z; be defined by z1(p;) = #(p2;) and let za be defined by za(p;) =
z(p2i41). As z satisfies X we have that z; = z3. Furthermore, Mg (¢, z) =
Mg (¢, z) = 1. But we note that subst(¢, s1) is equivalent to —subst(1), s2)
for substitutions sy with s1(p2;) = p; and so with sa(paiz1) = pi. So
we have Mg(¢,z) = 1 = Mg(subst(¢,s1),21) = 1 = Mg(,z) =
Mg (—subst(¢, s2), z2) = 0, which is a contradiction.

Claim 2: If K does not have finite support, then every finite subset 3y of

54

{#,v} UX is satisfiable in the K-semantics.
s follows from the definition of the support of K.
Assuming now, that K has no finite support, we get a contradiction to

Claim 1.

3.4.18: Corollary
If K is not compact, then either K or Ass\ K is not definable in WFF.

55
4 First Order Logic

In the previous chapter we have studied the syntax and semantics of Propo-
sitional Logic by modelling both within the language of sets. We have set
the examples of the type of reasoning which we can pursue when studying
syntax and semantics of logic. The central notion in such a study is the
notion of logical consequence. In this chapter we shall follow the same line
of development in studying First Order Logic.

First Order Logic is a formal language for describing structures of alge-
braic nature. Historically, the first examples of structures indeed were mo-
tivated by the developments in Abstract Algebra, i.e. the study of groups,
rings, fields, semi-groups and many others. In Computer Science such
structures are studied under the name of abstract data types such as words,
strings, stacks, lists, doubly linked lists, undirected and directed graphs and
many others. The structures mentioned are of different kinds, depending
on which notions we declare to be basic. The syntactic list of basic notions
will be called a vocabulary. The semantic counterpart of a vocabulary 7 is
an wnterpretation of the vocabulary 7, in short, a T—structure. A ‘museum’
of structures is introduced to illustrate the rather abstract concept of a
T—structure.

The chapter proceeds as follows:

We first introduce vocabularies and their interpretations, followed by the
museum of examples.

Next we define for each vocabulary 7 the set of well formed r—formulas
which forms the syntax of first order logic. Then we define its semantics, a
meaning function which has three arguments, a formula, a structure and an
assignment, and whose value again is a value in {0, 1}. Using this meaning
function we shall, in stricy analogy, define tautologies of First Order Logic,
satisfiability and logical consequence. After the introduction of these basic
semantic concepts we return for a visit to our museum of examples.

We shall also introduce a notion of proof sequences for First Order Logic
and show its completeness. As a consequence we shall also obtain a com-
pactness theorem for First Order Logic. A new visit to our museum will
yield surprising applications of the compactness theorem.

56
4.1 Vocabularies and Structures

Vocabularies are sets of relation symbols, function symbols and constant
symbols. Like in natural language, vocabularies for first order logic are
the building blocks of first order languages which are subject to various
interpretations. These interpretations are called first order structures.

4.1.1 Vocabularies

4.1.1: Definition (The countable universal vocabulary)
The countable universal vocabulary 7, consists of the following:

(i) For every natural number n and o we have a relation symbol R, o
of arity n and identification number o;

(ii) For every natural number n and o we have a function symbol F,
of arity n and identification number o;

(iii) For every natural number a we have a constant symbol cq.

We can also consider uncountable vocabularies 1 over finite arities for an
arbitrary set 1. In this case we change the definition above and request that
n be a natural number and o € 1.

4.1.2: Definitions (Vocabularies)

(i) A vocabulary is a subset of T C 1,. We usually denote vocabularies
with the Greek letter T or with T, where x can be any symbol serving
as an indez.

(ii) A vocabulary T is called finite (empty) if it is a finite (empty) subset
of 1.

(iii) A vocabulary t is relational if it does not contain any function symbol.

(iv) A function symbol (relation symbol) of arity one is called unary.
Unary relation symbols are also called predicate symbols. A function
symbol (relation symbol) of arity two is called binary. A function
symbol (relation symbol) of arity three is called ternary. More gener-
ally, a function symbol (relation symbol) of arity n is called n—ary.

4.1.3: Examples

(i) m = {Rao} is a vocabulary which consists of one binary relation
symbol with dentification number 0. 7 s relational and finite.

57

(1) Tarien = {co,c1, Fa, Fa1, Rao} consists of two constant symbols,
two binary function symbols and one binary relation symbol. Turieh
is finite but not relational. Usually Fo o stands for addition, Fo i
for multiplication and Rso for an order relation, so we shall of-
ten write, for simplicity, but contrary to our convention, Turith =

{CoaclaF+aF*aR<}’

(iii) As an example of an uncountable vocabulary, let Treqr be Tarien U{ey -
r € R}, i.e. we add to 14015 a constant symbol ¢, for every real
number r € R. Note that here the vocabulary is just a set, and the
problem of giving its elements constructive names is disregarded.

4.1.2 Interpretations of Vocabularies

Names in natural language are given meaning by associating with them
objects or concepts. The symbols in our vocabularies are given meaning
by associating with them sets.

4.1.4: Definition (r—structures)

Let Var be a dummy symbol, later to be used as the name of the set of
vartables. Let A be any set and let A be a function from {Var} Ut into
AU UnEN p(A™) such that

(i) A(Var) = A;

(ii) For every constant symbol co, € 7 A(ey) € A;

(iii) For every relation symbol R, o € T A(Rp o) C A”;

(iv) For every function symbol F,, , € T A(F, o) is a function from A"

wmto A.

A is called the universe of A. We say also that A is a T-structure over the
universe A.

4.1.5: Examples

(i) Let T=10. Then a T-structure A over a universe A is just the set A.

(ii) Let T = Taritn,. Let N be the T-structure with N'(Var) = N and with

(ii.a) N(co) =0, N(cr) =1,
(i1.b) N(Fa0)(n,m) =n+m,
(it.c) N(Fa1)(n,m) =n-m,
(it.d) (n,m) € N(Ra,) iff n < m.

58

N is called the (standard) Arithmetic Structure of the Natural Num-
bers.

(iii) Again, let T = T4pitn. Let Z be the T-structure with Z(Var) = Z, the
integers, and with

(iii.a) Z(co) =0, Z(e1) = 1,
(iii.b) Z(Fy0)(n,m) =n+m,
(iii.c) Z(Fy1)(n,m) =n-m,
(iii.d) (n,m) € Z(Ra,0) iff n <m.

Z 1s called the Arithmetic Structure of the Integers. More examples
are discussed in detail in subsection 4.2.

4.1.3 Isomorphisms and Substructures *

We now introduce a notion of indistinguishability of structures called iso-
morphism of 7-structures. The underlying idea behind this notion is that
the nature of the elements of the universe of a 7-structure is irrelevant to
the structure. What matters are the relations between the elements, and
the behaviour of the functions. When dealing with data structures in com-
puting, the same approach is followed. If a programming language knows
of natural numbers, integers, reals, stacks, lists, then those structures are
determined by some behavioural description which does not depend on the
particular implementation of the data structure in the assembly language
of the implementation.

4.1.6: Definition
Let A be a T-structure and X be a subset of the universe A = A(Var) of
A. X is m-closed if

(i) For every cq € T we have that A(cq) € X and

(ii) for every Fp o € T and d = (a1, ..., a,) € X" we have that F,, .(d) €
X.

4.1.7: Exercise
Make some examples of T-closed and not t-closed subsets of some T-
structures A.

4.1.8: Definition

Let A and B be two t-structures. Let X be a subset of the universe
A = A(Var) of A and Y be a subset of the universe B = B(Var) of
B. Furthermore let f: X — Y be a function, which 1s 1-1 and onto.

59

(i) f is a partial isomorphism with domain X and range ¥ if

(i.a) X is T-closed;
(i.b) For every co € T we have that f(A(cq)) = Blca);

(i.c) for every F, o € T and d = (a1,...,a,) € X" we have that
FA(F,o)(@)) = B(Fao)(f(a1), ..., flan));

(i.d) for every R, o € T and every @ = (a1,...,a,) € X" we have
that @ € ARy o) iff (f(a1),..., f(an)) € B(Rn o).

(ii) f is an isomorphism between the T-structures A and B if f is a partial
isomorphism with domain A(Var) and range B(Var).

(iii) Two t-structures A and B are isomorphic if there erists an isomor-
phism [between A and B. In this case we write A ~ BB.

(iv) f is an automorphism of the 7-structure A if f is a partial isomor-
phism with domain A(Var) and range A(Var).

(v) f is an embedding of the T-structure A into the r-structure B if f is
a partial isomorphism with domain A(Var) and range Y C B(Var).
In this case we write A Ty B.

(vi) A is embeddable into B if there exists an f such that A Cy B. In
this case we write AC B.

4.1.9: Proposition (Exercise)
The isomorphism relation between T-structures is an equivalence relation.
More precisely, let A, B,C be three T-structures. Then

(i) A~ A;
(ii) If A~ B then B~ A;
(iii) If A~ B and B~ C then A~ C.

4.1.10: Definition (Substructures)
Let A be a T—structure.

(i) We say that a T—structure B is a substructure of A, or that A is an
extension of B, and we write B C A, if
(i.a) B(Var) C A(Var);
(i.b) B is r—closed;
(i.c) for every n—ary relation symbol R € 7 B(R) = A(R) N B(Var)™.

60

(ii) Let B C A(Var) be t—closed. Let BB be the unique substructure of A
with B(Var) = B. We say that B is induced by B on A.

(i) Let B;,i € I be a family of substructures of A. We denote by ;. Bi
the unique substructure on A induced by X = (\;c; Bi(Var), provided
X 15 not empty.

4.1.11: Exercise

(i) B is a substructure of A iff B(Var) C A(Var) and the identity
funetion 1p : B(Var) — A(Var) is an embedding of B into the
T-structure A.

(ii) Prove the uniqueness claims in the above definition, i.e. let By, B2 be

two substructures of A with By(Var) = By(Var) then By = Bs.
(iii) Show that if B C A then BC A.
(iv) Find two T-structures A and B such that BC A but not B C A.

4.1.12: Proposition (Exercise)

The substructure relation between T—structures ts a partial order on the
class of T—structures. The embedding relation is only transitive. In other
words, let A, B and C be T-structures.

(i) f AC B and BC A then A= 5.
(ii) If AC B and BCC then A CC.
(iii) If AC B and BC C then ACC.
(iv) If, additionally, A or B is finite, then If A C B and B C A then
A~ B.

4.1.13: Definition

(i) Let A be a T—structure. A is minimal if A has no proper substructure,
i.e. for every substructure B of A we have that B = A.

(ii) Let A be a T—structure and X C A(Var). A is minimal over X if A
has no proper substructure containing X, i.e. for every substructure

B with X C B(Var) of A we have that B = A.

4.1.14: Exercise
Let B be a T—structure and A be a substructure of B. Show that the following
are equivalent:

61
(i) A is minimal;
(i1) A is minimal over §);
(iii) A=N{C:CCB};
(iv) For every X C A(Var) which is 7—closed, X = A(Var).

4.1.15: Proposition—Exercise
Let A be a T—structure and X C A(Var) and X # 0. Show that there is a
unique substructure Bx of A which is minimal over X.

4.2 A Museum of Structures

In this section we list some examples, which are useful to train our imagi-
nation.

4.2.1: Definition (Expansions and reducts)

Let 7 be a vocabulary and 7 C 7. Let A be a T-structure and Ay the 7 -
structure defined by A;(Var) = A(Var) and for every relation, function
and constant symbol X € 7 A1(X) = A(X). In this situation we say that
A is a T—expansion of Ay or that Ay is a 7 —reduct of A.

4.2.1 Structures for Arithmetic

Let 74ritn be the vocabulary {Fy, Fi, R<, cp,c1} consisting of two binary
function symbols, one binary relation symbol and two constant symbols.
We have already defined two 74.5¢p-strcutures A and Z, the arithmetic
structure of the natural numbers and of the integers, cf. 4.1.5.

4.2.2: Exercise

(i) Show that N is a minimal Typip —structure. Determine the vocabular-
ies T C Tapritn such that the T—reduct of N is still minimal and those
such that not. In the latter case exhibit some proper substructures.

(i) Let Ny be the reduct of N to the vocabulary 7arien \ {c1}. Is Ny a

minimal structure ¢ If not, exhibit some substructures.
(#i) Show that N is a substructure of Z.

(iv) Are there any structures A such that N C ACZ ?

4.2.3: Definition (The Arithmetic Structure of the Real Numbers)

62

(i) The structure R is the Topich —structure given by
R(Var) = R, the real numbers,

(Fy) the usual addition on the real numbers,
R(Fy) the usual multiplication on the real numbers,
(R<) the usual linear order on the real numbers,

(

(ii) Let Tarien be the wvocabulary {Fy, F., Re,co,c1, F_, Fao} with
F_ | Fgp both unary function symbols. We expand R to a Tarith-
structure R'™ by defining
R™Y(F_)(a) = —a and
R (Fyip)(a) = a™t for a # 0 and R™ (Fu,)(0) = 0.

4.2.4: Exercise

(i) Show that N T R. Why is it not true that N T R™"™V.
(i1) Determine the minimal substructures of R and R'™Y.

(iii) Let I C R be the set of irrational numbers. Determine the substruc-
tures of R and R*™Y which are minimal over 1.

4.2.5: Definition (The Arithmetic Structure of the Rational Num-
bers)

(i) The structure Q is the Typsen—structure given by
Q(Var) = Q, the rational numbers,

(Fy) the usual addition on the rational numbers,
Q(F.) the usual multiplication on the rational numbers,
(R<) the usual linear order on the rational numbers,

(

(1) For Taritn we expand Q to a Tapicn-structure Q™ by defining
Q" (F_)(a) = —a and
Qm”(de)(a) —q ! for a# 0 and Qinv(Fdiv)(O) =0.

4.2.6: Exercise

(i) Show that N T Q. Why is it not true that N T Q™"?.
(i1) Show that both @ C R and Q" C R"v.
(#i) Determine whether N~ Q and Q ~R.

(iv) Determine the minimal substructures of Q and Qinv,

63

(v) Determine the vocabularies T C Tarpieh such that the T—reduct of Q s
still minimal and those such that not. In the latter case exhibit the
minimal substructures.

4.2.7: Definition (The Powerset Structures)
Let A be a set. The structure P(A) is the Tapien —structure given by
P(A)(Var) = p(A), the subsets of A;
P(A)(Fy) the usual union of two sets,
(Fy) the usual intersection of two sets,
(R<) the usual inclusion relation between sets,
(

Co) = @, P(A)(Cl) = A.

: Exercise

)
P(4)
P(4)
P(4)
4.2.8

(i) Determine the minimal substructures of P(A) for various choices of

(ii) Let X = {Ay,..., Ar} be a finite partition of a a set A. Determine
the minimal substreuture of P(A) over X.

Let Tticia C Tarith be the vocabulary {Fy | Fi, co,¢1} and Trierqg C Tarieh be
the vocabulary {Fy, Fy, co,e1, F—, Fuiv }-

4.2.9: Definition

(i) The structure C is the Tpic1q—structure given by

C(Var) = C, the complex numbers,
(Fy) the usual addition on the complex numbers,

C(F.) the usual multiplication on the compler numbers,
C(Co) = 0, C(Cl) =1.

(1) For tpiea we expand C to a Tpieq-structure C'™™Y by defining
C"(F_)(a) = —a and
C"(Fyin)(a) = a=t for a # 0 and C"™(F4,)(0) = 0.

(m) Let Rfield be the Tfieldfreduct OfR and Let RField be the TField —
reduct of RV,

4.2.2 Graphs and Orders

Graphs are usually represented as < V, E > where V is any set called the
set of vertices and E C V? is called the set of directed edges. To describe
graphs as structures in our sense, let 7,.4p5 be the vocabulary consisting
of one binary relation symbol Rg.

4.2.10: Definition (Graphs and Orders)

64

(i) A directed graph is a Tgrepp —structure G with G(Var) =V the set of
vertices, G(Rg) = E with E C V? the set of edges.

(i) A undirected graph is a Tyapn—structure G with G(Var) = V the
set of vertices, G(Rg) = E with E C V? the set of edges with the
property that for every a,b € V {a,b) € E iff (b,a) € E.

(iii) A graph (directed or undirected) G is finite if V is finite.

(iv) A directed graph is a partial order if the relation E is transitive, i.e.
(a,b) € E and {(b,c) € E imply that (a,c) € E, and if (a,b) € E and
(b,a) € E imply that a = b.

(v) A partial order is said to be total (or linear) if additionally we have
that for every a,b € V either {a,b) € E or {(b,a) € E.

4.2.11: Exercise

Draw some directed graphs by representing the set V as points on a piece
of paper and connecting two points a,b € V with an arrow from a to b
iff {(a,b) € E. Draw some undirected graphs similarly but connecting two
points a,b € V with a line between a and b iff {a,b) € E.

Similarly we can model labelled graphs and relational data bases.

4.2.3 Words and Sets of Words as Structures

Let Tyorqg be the vocabulary consisting of one binary relation symbol R,
and one unary relation symbol Ry.

4.2.12: Definition (One word as a structure)

(i) A word of length n is a Tyorqg—structure W with
W(Var) = {1,2,...,n},
W(R<) the natural order and
W(Ry) C W(Var).
We can visualize words over the letters a,b as follows: the k-th letter

of the word is a iff k € W(Ry).

(ii) Let w € {a,b}* be a word of length n. Let Wy, be the Ty orq—streuture
defined by
Wy (Var) = {1,2,...,n},
Wy (R<) the natural order and
Wy (Ry) C W(Var) given by k € Wy, (Ry) iff the kth letter in w is

a.

4.2.13: Definition (The set of words A* as a structure)
Let 15,4 be the vocabulary consisting of a binary function symbol I, and a
constant symbol co. Let A be a set and A* be the set of finite words over

65

A. We denote by W(A) the 1,4-structure defined by
W(A)(Var) = A*a,

W(A)(Fo)(x,y) =z oy and

W(A)(co) = €, the empty word.

Let TWFF — {FVa F/\a F—H F—n Rl:a Rtauta Ctrue, Cfalse} Wlth FVa F/\a F—>
binary function symbols, F_ a unary function symbol, R- a binary and
Riqur a unary relation symbol and cirye, Craise constant symbols.

4.2.14: Definition (WFF as a structure)
Let WFF be the myw pp —structure defined by
WFF(Var) = WFF,

WFF(Fy) (%) = (¢ V),

WFF(Fa)(¢,%) = (6 AY),

WFF(FL)(,¢) = (¢ = ¥),

WFF(F.)(¢) = ¢,

Wff(Cfalse) = F, Wff(ctrue) = T,
WFF(Riqut) is the set of tautologies and
(6,4) € WFF(R) iff ¢ | .

4.2.4 Data Structures of Computer Science

In this subsection we show one way of modelling the familiar data structures
of Stacks, Queues and Lists as structures.

4.2.15: Definition (Stacks)

Let Tgstacks be the wvocabulary consisting of two unary function symbols
Fpop, Frop, one ternary relation symbol Rpysp and a constant symbol cpew.
Let A be a set. ST (A) is the Tsiqeks—structure given by

ST (A)(Var) = A*;

ST (A)(Fpop)(€) = € and for every a € A and w € A*;

ST(A)(Foap) (w0 @) = w;

ST (A)(Ftop)(€) = € and for every a € A and w € A™;

ST(A)(Frop){woa) = a;

ST (A)(Rpusn) C A* x Ax A* with (w,a,u) € ST (A)(Rpush) iff u=woa;
ST (A)(enew) = €, the empty stack.

4.2.16: Definition (Queues)

Let Tyueue be the wocabulary consisting of two unary function symbols
Fyet, Firont, one ternary relation symbol Ry and a constant symbol cpeq .
Let A be a set. QU(A) is the Tgyeue —structure given by

)

)(Fget)(€) = € and for every a € A and w € A*;

) (Fger)(w o a) = w;

)(Ftront)(€) = € and for every a € A and w € A*;
JFpron w0 @) = a;

66

QU(A)(Rpur) C A* x A x A* with (w,a,u) € QU(A)(Rput) iff u=aow;
QU (A)(cnew) = €, the empty queue.

4.2.17: Remark

When dealing with data structures it is observed that both Rpysp and Rpy:
are interpreted as functions from A* x A to A*. In our definition of struc-
tures functions are always total functions on the universe. This s why we
modelled their graph as ternary relations.

Recall from section 2.5 that CART(A) denotes the smallest set which
contains A and is closed under the formation of ordered pairs.

4.2.18: Definition (Lists)

Let m;5¢ be the vocabulary consisting of two unary function symbols
Fhead, Frait, one binary function symbol F..ns and a constant symbol cq.
Let A be a set. LI(A) is the ;5 —structure given by

LI(A)(Var) = CART(A) U{0};
LI(A)(Fheada)(z) =0 for every re Au{b};
LI(A)(Fheaa)((x,y)) =

LI(A)(Frait)(z) =0 for every ze AuU{l};
LI (Fra) (2, 5)) = 3,
LI(A)(Feons)(x,y) = (v, y);

LI(A)(co) =0

4.2.19: Exercise (Trees)
Define simailarly trees

4.2.5 ¢&—Structures

In this subsection we introduce some structures modelling sets. Let 7 ¢
be the vocabulary consisting of one binary relation symbol R¢ and one
constant symbol c¢g.

4.2.20: Definition (€—structures)
(i) Let A be a set with) € A. We denote by SET (A) the 754 —structure

with SET (A)(Var) = A, SET(A)(co) =0 and {z,y) € SET (A)(Re)
iffeey.

(ii) For HF(A) we write HF(A) instead of SET (HF(A)). In particular,
for HF we write HF instead of SET (HF).

4.3 Syntax and Semantics of First Order Logic

In this section we define the syntax and semantics of First Order Logic
with equality.

67
4.3.1 Syntax of First Order Logic

4.3.1: Definition (Logical Symbols)
Logical symbols are elements of the set Logsymb = {A,V,—, .V, 3, ~}.
Separator symbols are elements of the set Sepsymb = {(,), , }.

A is read as ‘and’, V is read as ‘or’, = is read as ‘not’, ¥ is read as ‘for
all” and is called universal quantifier, 3 is read as ‘there 1s’ and is called
existential quantifier, & is read as ‘equals’ and — is read as ‘arrow’. We
avord reading — as ‘implies’, as sometimes suggested in the literature.

4.3.2: Definition (Variables)
For every i € N , v; is a variable. The set of all variables is denoted by
Var. Note that Var is the dummy symbol we had introduced in definition

414

Well-formed formulas of First Order Logic are strings containing sym-
bols which are in Logsymb U Sepsymb U Var U 7.

4.3.3: Notation
We shall use a vector notation for variables. Thus ¥ stands for (1, ..., xx)
for some variables x1 = v;,, ..., x5 = vj,.

We first define the set of m-terms. Terms are complex names of elements,
built from variables, constant symbols and function symbols.

4.3.4: Definition (r-Terms)
Let 7 be a vocabulary. The set Terms(r) of T-terms is defined inductively
as follows:

Basis:

(i) Var C Terms(r).
(ii) For every cq € T we have co € Terms(r).
Closure: Ifty,...,t, are terms and F,, o € T then Fj, o(t1,...,t,) €
Terms(r).

The variables occuring in the stringt € Terms(7) are called free vari-
ables. We denote the set of free variables int by Free(t).

4.3.5: Notation
We shall also use vectorial notation for terms. Fort = (t1,...,tn) we then
can write instead of F,, o(t1, ... t,) simply Fnya(t‘).

4.3.6: Theorem (Unique Readability for Terms, an Exercise)
Let t € Term(r). Then one of the following is true:

(i) t = cq for some unique co € T;

(ii) t = v; for some unique v; € Var;

68

(iii) There is a unique Fy, o € T and there are unique termsty, ... t, such
that t = Fp o(t1, ... 1,).

Proof. The proof is very similar to the corresponding theorem for propo-
sitional logic. Note however, that we have not bothered to define the tree
version of terms. The various statements in the theorem do correspond to
the nodes of the tree, and the induction proceeds along those statements.

4.3.7: Definition (Atomic 7-FOL-Formulas)

(i) Ift1 and ty are T-Terms then (t1 & t2) is an atomic T-FOL-formula,
and Free(t; s ty) = Free(ty) U Free(ts)

(ii) If Rj o € T and t1,...,t; are T7-Terms then R; .(t1...,%;) is an
atomic 7-FOL-formula, and Free R; o(t1...,t;) = Free(ti)U---U
Free (t;)

4.3.8: Definition (7-FOL-Formulas)

(i) If ¢ is an atomic T-FOL-formula then ¢ is a T-FOL-formula.
(ii) If ¢ is a T-FOL-formula then —¢ is an T-FOL-formula, and

Free((—¢)) = Free(¢)

(iii) If ¢ and ¢ are T-FOL-formulas then (¢ V), (6 AY), (¢ — ¢), are all
m-FOL-formulas, and Free ((¢ V)) = Free ((¢ A¢)) = Free ((¢ —
¥)) = Free(¢) U Free ().

(iv) If ¢ is a 7-FOL-formula and ¥ € Var is a variable then (Ya¢)
and (3z¢) are T-FOL-formulas, and Free (Va¢)) = Free ((3z¢)) =
Free(¢)\ {«}.

We say also, that all of the occurences of x in ¢ are bound by the
quantifier ¥ or 3.

We denote the set of T-FOL—-formulas by FOL(T).

4.3.9: Remark

Although our strict formation rules of FOL-formulas requires that the ap-
plication of a quantifier is followed by enclosing the resulting formula with
parentheses, we shall later drop this convention. Hence, in liberalized form,

69

if ¢ 1s a T-FOL-formula and x € Var is a variable then Yx¢ and Jx¢d are
7-FOL-formulas.

4.3.10: Definition (Sentences)
If ¢ is a T-FOL-formula and Free(¢) = 0, then ¢ is a 7-FOL-sentence.
We denote the set of T-FOL-sentences by SENT(T).

4.3.11: Definition (Subformulas)
Let ¢, be T-FOL-formulas. 1 is a subformula of ¢ if there are words o, 3
such that « oo = ¢

4.3.12: Theorem (Unique Readability for Formulas, an Exercise)
Let ¢ be a T-formula. Then one of the following is true:

(i) ¢ is an atomic formula and begins with a relation symbol R, o € T.
(ii) ¢ is an atomic formula and begins with (followed by some term t.

(iii) ¢ begins with (¥ and there is a unique variable v; and a unique sub-

formula o of ¢ such that ¢ = (Yu;4);

(iv) ¢ begins with (3 and there is a unique variable v; and a unique sub-

formula ¢ of ¢ such that ¢ = (Fui);

(v) ¢ begins with = and there is a unique subformula ¢ of ¢ such that
¢ =;

(vi) ¢ begins with (and there are unique subformulas 1,12 such that
either ¢ = (Y1 V2) or ¢ = (1 Aa); ¢ = (Y1 — ¢a).

Proof. Use the Unique Readability for terms and proceed by induction
on the construction of the formula. We have not bothered to give the tree

presentation of formulas, but propose it in the exercise below. I

4.3.13: Remark
The reader should convince himself that the unique readability also holds
for the liberalized notion of FOL—formulas.

4.3.14: Theorem (Exercise:)

(i) Define, analogously as for WFF and WFTF, the set of 7-tree—
formulas 7 — TFOF. The case of the quantifiers requires some kind
of additional marking of the variables to be bound which requires two

kinds of links.

(ii) Define writing and reading of formulas as the translations of T —
TFOF into 7 — FOF and vice versa.

70

(iii) Using the above definitions state and prove the Unique Readability
Theorem for First Order Logic.

4.3.15: Remark

Note that the notion of T-FOL—formulas is context free. However, checking
whether a variable v; is free (or bound) in some formula ¢ is not contert
free but context sensitive.

4.3.2 Semantics of First Order Logic

Semantics is the solid foundation of meaning. In the case of First Order
Logic meaning depends on a given 7-structure 4 and is assigned to 7-
formulas by means of a meaning function. This meaning function is built
in stages. We first give meaning to the variables by an assignment z which
maps variables into the domain of the structure A. Then we extend this
assignment function to give meaning to 7-terms. Finally we define the
meaning function M with three arguments, which depends on a formula ¢,
a structure 4 and an assignment z, and has the boolean values 0 or 1. In
detail this looks as follows:

4.3.16: Definition (Variable Assignment)

(i) Given a T-structure A with domain A(Var) = A an assignment z is
a mapping z : Var — A from the set of variables to elements of the
domain.

(ii) We denote the set of all assignments z : Var — A by Ass(A).
(iii) Let z1 and zy be two assignments of Ass(A). We write z1 =; zo if for

every j # i we have that z1(v;) = z2(v;).

4.3.17: Definition
Given a t-structure A and an assignment z, the meaning function for -
terms is a function MT : Terms(r) x Ass(A) — A, defined inductively as
follows:
Basis:
(i) MT(v;,2) = z(v;);
(ii) If co € T then MT(cq, 2) = co;

Closure:
If Fpo €7, t1,...,t, and t are T-terms witht = F,, o(t1,...,t,) then

MT(t,2) = A(Fp.o)(MT(t1, 2), . .., MT(L,, 2)).

71

4.3.18: Exercise
Write down some examples.

4.3.19: Definition
The semantic for our languages is described by means of the meaning func-
tion M (¢, A, z) where ¢ is a formula, A a structure and z an assignment.

The meaning of the formulas is defined inductively as follows:
Basis:

(i) M((ty ~ts),A,2) =1 iff MT(t1,z) = MT(ts, z);

(ii) M(Rjolty ... t;), A z) = 1iff (MT(t1, 2), ..., MT(t;, 2)) € A(Rj.);
Closure:

(i) M(~¢,A,z) =TT, (M(¢, A, z))

(it) M((¢ V), A z)=TTv(M(¢, A, z), M(¢, A, 2));

(iii) M((¢ A1), A, z) = TTA(M(0, A, 2), M(0, A, 2));

(w) M((¢ =), A, 2) = TT5(M(¢, A, 2), M (¢, A, 2));

(v) M((Jui¢), A, z) = 1 iff there exists z1 € Ass(A) such that z = =
and M (¢, A, z1) = 1;

(vi) M((Vvig), A, z) = 1 if for every z1 € Ass(A) such that z =; z; we
have that M (¢, A, z1) =1

(
(
(
(

4.3.20: Remark

Note that this definition works because of the Unique Readability Theorem
for First Order Logic.

4.3.21: Proposition
If ¢ is a sentence, then M(¢,A,z) is independent of z, i.e. for every
z,21 € Ass(A) M(¢, A, z) = M (¢, A, z)

The next theorem states that isomorphic r-structures can not be dis-
tinguished by 7-formulas. In other words, the meaning functions M7 and
M are not sensitive to change of structures by isomorphic copies.

4.3.22: Theorem (The Isomorphisms Property)

Let A, B be two T-structures, X C A(Var) and Y C B(Var). Let
f X =Y be a partial isomorphism with domain X and range Y. Let
z: Var = X be an assignment and z1 be the assignment defined by z1(v;) =

f(z(vi)).
(i) Lett be a T-term. Then f(MT(t,A,z)) = MT(t,B,).
(ii) Let ¢ be a T-formula. Then M (¢, A, z) = M(¢, B, z1).

72
4.4 Basic Semantic Concepts

In this section we present the basic semantic concepts such as logical con-
sequence, logical equivalence, satisfiability and tautologies for first order
logic. As particular examples and applications of the notion of logical
equivalence we study the effect of substitution of subformulas and some
normal forms for first order logic.

4.4.1 Validity, Logical Equivalence and Logical Consequence

4.4.1: Definition
Let X2 be a set of T-formulas and ¢ and ¢ be two T-formulas.

(i) Let A be a T-structure and z be an assignment. We extend the mean-
ing function for formulas to sets of formulas by setting M (X, A, z) =
1 iff for every ¢ € ¥ we have that M (¢, A, z) = 1.

(ii) We say that ¢ is a logical consequence of X, and we write & |
@, if for every r-structure A and every assignment z such that
M(Z,A,z) = 1 we have also that M(¢,A,z) = 1. If ¥ = 0 we
write simply = ¢ instead of O = ¢. If ¥ = {¢} is a singleton we
write, by abuse of notation, also ¥ = ¢ instead of {¢} = ¢.

(iii) Similarly we write © =X if ¥ = ¢ for every ¢ € ¥4.

(iv) We say that ¢ and ¢ are logically equivalent, and we write ¢ = ¢, if
b and if ¥ = .
(v) ¢ is a tautology (or valid) if it is a consequence of the empty set, i.e.

= o.

(vi) ¥ is satisfiable if there is a T-structure A and an assignment z such

that M(X,A,z) =1

4.4.2: Notation
Let X3, % be sets of T-formulas, A be a T-structure and z be an assignment.

(i) We write A,z = %1 for M(X1,A,z) = 1 and A |E= Xy if for every
assignment z M (X1, A, z) = 1.

(ii) We write X |= Xy if for every A with A =X we have also A = 4.
(iii) Note that this notation is consistent with ¥ |= X, defined above via

logical consequence.

4.4.3: Proposition

(i) ¢ is a tautology iff —¢ is not satisfiable.

73

(1) TE (6 =) f TU{s} EY.

(iii) X = (¢ A —¢) iff T is not satisfiable.

(iv) ¥ is not satisfiable iff for every ¢ we have that ¥ |= ¢.
(0) 6= iff both = (6=) and |= (4 = ¢)

4.4.4: Proposition (Some Tautologies and Equivalences)

(i) Let B(p1,...,pn) be a propositional formula in WFF which is a
propositional tautology. Let ¢1, ..., ¢, be T-formulas. Let ¢ be the T-
formula B(¢1,...,¢n) obtained from B by replacing each occurrence
of the propositional variable p; by ¢;. Then ¢ is a tautology (among
first order formulas).

(ii) Let ¢1,4¢1 and 2 be T-formulas such that 1 is a subformula of ¢4
and Y1 = 1bs. Let ¢ be the formula obtained from ¢1 by replacing 1
by 1/)2. Then ¢1 = qf)z.

Proof. (i) First we prove by induction on the structure of B that
M(¢, A, z) = Mpr(B, z1) where z; is the propositional assignment defined
by z1(p;) = M(¢;, A, z). Then we use that B is a propositional tautology
to conclude that ¢ is a first order tautology.

(ii) Let ¢1 = a oy o B. We proceed by backward induction on o« and

induction on S and use the Unique Readability Theorem. I

4.4.5: Proposition (Moving quantifiers in formulas)
Let ¢, be T-formulas. Then

(i) Yoi(6 A) = (Vuid A Void);
(1) Jvi(6 V) = (Fuid V Juid);

(iii) If v; does not occur free in ¢ then (Vvi¢p A) = Vui(é A) and
(Vvip V) = Yo (¢ V),

(iv) If v; does not occur free in ¢ then (Jvi¢ V o)
(Fuig Ap) = Fu; (¢ AY);

(v) Vv = Fvi—¢ and —Fv;¢ = Yv—¢;

v (¢ V ¢) and

4.4.6: Definition (Substitution of Terms)
Let s : Var — Term(r) be a function. Lett € Term(r) and ¢ be a
T-formula. We define st(t,s) and subst(¢, s) inductively in two stages.

74

(i) st(ca,s) = ca;

(i) st(vi,s) = s(vi);

(iii) st(Fpa(te, ... tn),8) = Fpa(st(te, s),. .., st(tn, 5));
(iv) subst((ty ~ 15),5) = st(ty, s) & st(ls, 5);

(v) subst(Rp.a(ti, ..., 1n),5) = Roa(st(t1,s), ..., st(tn,5)):
(vi) subst(=¢,s) = —subst(d, s);
(vii) subst((¢ A), s) = (subst(¢,s) A subst(¢, 5));
(viii) subst((¢V 1), s) = (subst(p, s) V subst(1), 5));
(¢ —

(
4
4
(
(
(

(iz) subst ¥),s) = (subst(¢, s) — subst(y, s));

(z) subst(Yvig,s) = Vu;subst(¢, s1) with s1(v;) = v; and s1(v;) = s(v;)
forali#j.

(xt) subst(v;¢,s) = Jv;subst(¢, s1) with s1(v;) = v; and s1(v;) = s(v;)
forali#j.

4.4.7: Proposition (Renaming of Bound Variables)
Let s : Var — Var be a function and ¢ a T-formula. Assume that s(v;)
does not occur at all in ¢ and s(v;) = v; for every i # j. Then

(i) Yv;¢ =Vs(v;)subst(¢,s) and
(i) Jv;¢ = Is(v;)subst(e, s).

Proof. The proof uses the fact that M(¢,.A, z) is not dependent on

2(s(v;)). |

The condition that s(v;) does not occur at all in ¢ in proposition 4.4.7
is not the weakest possible.

4.4.8: Exercise
Analyse what other conditions on the occurrence of s(v;) in ¢ suffice for

the conclusion of proposition 4.4.7 to remain true. Is the condition that
s(vj) is not in Free(¢) sufficient ?

Note that in the proof rules in section 4.6 additional conditions on
substitutions are imposed.

4.4.9: Proposition (Replacing equivalent subformulas)
Let ¢ be a formula with subformula 8, i.e. ¢ = avof o B. Let 0 be a
formula such that @ = 6, and Free(theta) = Free(thetay). Then

75
(i) ¢1 = ao by o B is a well formed formula and
(i) ¢ = ¢1.

Proof. Use unique readability and induction on the structure of ¢. I

4.4.2 Normal Forms

First order formulas are built by using the boolean operations and quan-
tification in arbitrary order. The purpose of Normal Forms is to restrict
the order of these building steps, similar as in the case of CNF for propo-
sitional logic. The most important normal form for first order logic is the
Prenex Normal Form. The word ”prenex” refers to "pre” (latin: before)
and "nexus” (latin: bound) and is used in logic to indicate that all the vari-
able binding appears in the formula before any other logical operations.

4.4.10: Definition (Quantifier free formulas)
The set QF(r) of quantifier free r-formulas is built inductively as follows:
Basis: Atomic T-formulas are quantifier free.

Closure: If ¢, € QF(71) then so are ¢, (¢ A), (¢ V), (¢ — ¥).

4.4.11: Definition (Prenex Normal Form)
The set PNF (1) of 7-formulas in prenex normal form is built inductively
as follows:

Basis: QF(7) C PNF(r).
Closure: If ¢ € PNF(7) then so are Yv;¢ and Jv;¢.

4.4.12: Theorem (Prenex Normal Form Theorem)
For every T-formula ¢ there is a T-formula ¥ such that:

() o=
(ii) v € PNF(r) and
(iii) ¢ and ¢ have the same free variables.
(iv) Furthermore the length of ¢ is linear in the length of ¢.

Proof. The proof is by induction on ¢. If ¢ € PNF(r) there is nothing
to prove. In the other cases we use the proposition on moving quantifiers
4.4.5, renaming bound variables 4.4.7 and replacing equivalent subformulas

4.4.9. |

4.4.13: Definition (Universal and Existential Formulas)
A m—formula ¢ in PNF(7) which has only universal (existential) quanti-
fiers is called a universal (existential) formula.

76
4.4.3 Models and Theories *

In this section we introduce some definitions useful in the discussion of
examples.

4.4.14: Definition (Definable Classes of Models)

(i) We denote by Str(t) the class of all T—structures.

(ii) For every set of T—sentences ¥ we denote by
MOD(X) ={A € Str(r) : for every assignment z M(X, A, z) = 1}

MOD(X) is called the class of all models of X.

(iii) Let K C Str(r). K is called (finitely) definable if there is a (finite)
set X of T—sentences such that K = MOD(X).

Note that A € MOD(Y) is equivalent to A = 3.

4.4.15: Definition (Elementary equivalence and elementary sub-
structures)

Let A, B € Str(r).

(i) A, B are said to be elementarily equivalent, and we write A = B, if
for every ¢ € SENT(r) A= ¢ iff BE ¢.

(ii) A are said to be elementarily substructure of B, and we write A < B,
if A is a substructure of B and for every assignment z : Var —

A(Var) and for every ¢ € FOL(T) A,z = ¢ iff B,z = ¢.

4.5 Visit to the Museum: The Meaning Function and
Definability

In this section we discuss some examples of what formulas can say. Learning
how to read and understand the language of First Order Logic is essential
for the intuitive grasp of logic and its mathematical treatment. But it
should not be confused with reasoning about First Order Logic (and other
logics). The former is like using a language to talk and communicate, the
latter is like reasoning about such languages. And as the communication of
reasoning about languages is done in language, so the reasoning about logic
is done in mathematical language which again can be modelled in logic.

77
4.5.1 The Logical Lieu

Logical formulas say something about the structures in which they hold. If
the r—formula ¢ has no free variables and A is a 7—structure, the value of
M(¢, A, z) is

If the T—formula ¢(vy, . .., v,) has exactly vy, ..., v, as its free variables
and A is a T—structure, the value of M (¢, A, z) depends on z(v1), ..., z(vy)
and defines a subset of A(Var)", similarly to 2 + y* + 22 = 1, which
defines the unit circle in R3. The latter is called in elemntary geometry
the ‘geometrical lien’ defined by 24 y? 4+ 2% = 1. In analogy to this we now
introduce the ‘logical lieu’ defined by a first order formula in a structure.

4.5.1: Definition (Logical Lieu)
Let ¢(v1,...,vn) a T—formula with exactly vy, ..., v, as its free variables
and A be a T—structure.

(i) We denote by ¢(A) the set
{{a1, ..., an) € A(Var)" :
there is a z with M (¢, A, z) =1 and z(v1) = ay,...,2(vy) = an}.

(ii) Let X C A(Var)". We say that ¢ defines the set X over A or that
X is the logical lieu defined by ¢ over A if X = ¢(A).

The rest of this section is devoted to examples.

4.5.2 Ordered Fields

Recall that 740545 is the vocabulary {Fy, Fi, Re,cg,c1} and R (Q,N) is
the Arithmetic Structure of the Real (Rational, Natural) Numbers and Z
of the Integers. The structures R and @ are what is called a field, i.e.
addition and multiplication satisfy the following (set theoretic) properties:

Commutativity x+y=y+ x, x %y = y * x;
Associativity v+ (y+z) = (e +y) +z, 2% (yx2) = (2 +y) * z;
Neutral Element 0 +z =2,1xz =z,0%x 2 = 0;

Inverse Element For every x there is a y such that « +y = 0,
for every # # 0 there is a y such that z x y = 1;

Distributivity = * (y + 2) = (z *x y) + (2 * 2).

4.5.2: Exercise

78

(i) Translate the above properties into Tapin-formulas and verify that
your translation is satisfied both in R and Q.

(ii) Which of the properties have a translation which is not in Prenex
Normal Form ? Can you find a translation which is in Prenex Normal

Form?

(#ii) Which of the above properties are not satisfied in N' 2
(iv) Which of the above properties are not satisfied in Z ¢

The structures R and @ are both what is called an ordered field, i.e.
addition and multiplication satisfy the following additional (set theoretic)
properties:
Asymmetry If x < y then not y < x;
Transitivity if z < y and y < z then z < z;
Linearity for every x,y either z <y or y <z or x = y;
Momnotonicity If x < y then for every z also 2 + z < y + 2;

if 0 < z and 0 < y then also 0 < z * y.

4.5.3: Exercise

(i) Translate the above properties into Tapin-formulas and verify that
your translation is satisfied both in R and Q.

(ii) Which of the properties have a translation which is not in Prenex
Normal Form ? Can you find a translation which is in Prenex Normal

Form?
(#ii) Which of the above properties are not satisfied in N' 2
(iv) Which of the above properties are not satisfied in Z ¢

4.5.4: Exercise

(i) Find a Tricia—formula ¢pos(v1) with one free variable (and without
R) which defines the positive elements of R. (Hint: The squares)

(ii) Find a Tpic1q—formula ¢opq(v1, va) with two free variables (and without
R) which defines the linear order on R. (Hint: Use ¢pos)

(i11) Determine the logical lieu of ¢pos and ¢ora tn Q, Z, N.

79

4.5.3 The Natural Numbers

Let Tpeano be the vocabulary {F, F.,S, cg,c1} consisting of two binary
function symbols, one unary function symbol and two constant symbols.
Let Npeano be the Tpeano—structure defined as follows: Npeano(Var) = N,
Npeano(F4) the usual addition on the natural numbers,

./\/peano(F*) the usual multiplication on the natural numbers,
Npeano(Fsuce) the usual successor function (+1) on the natural numbers,

Npeano(CO) = 0; Npeano(cl) =1
4.5.5: Exercise

(i) Find a formula ¢ € FOL(Tpeano) which defines the usual order of the
natural numbers on Npeano.

(ii) Find a formula ¢ € FOL(14ritp) which defines the successor function
of the natural numbers on N .

(iii) Show that for every formula ¢ € FOL(Tpeano) there is formula
t € FOL(74yith) with the same free variables such that for every as-
signment z : Var — N we have that M (¢, Npeano, 2) = M (¢, N, z).

4.5.6: Exercise

(i) Find a formula ¢ € FOL(Tycan,) with two free variables which defines
the usual divisibility relation ‘m divides n’.

(ii) Find a formula ¢ € FOL(74rit) with one free variable which defines
the set of primes.

(iii) Find a formula ¢ € FOL(Tpeano) without free variables which ex-
presses that there are infinitely many primes in N.

The natural numbers satisfy the Induction Principle:
For every X C N such that 0 € X and whenever n € X the n+1 € X,
then X = N. We shall see in section 4.7 that the Induction Principle is not
expressible in first order logic. The best we can do in first order logic in
describing the Induction Principle consists of writing down each instance
for 1t for which X is definable as a formula.

Let ¢(vo,v1,...,0k) be a Tpeano, formula with vy, v, ..., v as its free
variables. Let Indys be the following formula:

Yor, ..., Yog[(¢(eo,v1, .. vi) A (Vogg(vg, v1, ..., v5) =

d(Fsuee(vg), v1,...,v5))) = Yogg(vo, v, ..., %))

80

4.5.7: Exercise

(i) Verify that Npeano = Indy for every Tpeano formula.

(i1) Let Ind*ty be the following formula:
Yor, .., Yogp[(¢(co, v1, . vi) A (Vogg(vg, v, ..., vg) —

$(Fy(vo,c1),v1,...,05))) = Yogd(vo, v1, ..., vx)].

Verify that Npeano E Ind+¢ for every Tpeano formula.

4.5.4 Graphs and Orders
Let G =< V, E > be a graph.
4.5.8: Exercise

(i) Find a Tgrapp-formula without free variables which says that there is
a cycle of length k.

1) Find a Typqpp-formula with two free variables which says that there is
grap
a path of length k between two elements x,y € V.

(iii) Find a Tgrqpn-formula with one free variable which says that a vertex
z € V has out-degree (in-degree) k.

Let G =< V,E > be a linear order. Let a,b € V. We say that a
is smaller (bigger) than b if {a,b) € E ((b,a) € E). a is a successor
(predecessor) of b if a is the smallest (biggest) element bigger (smaller)
than b. An element a is a first (last) element if there are no elements in
V which are smaller (bigger) than a. G is discrete if every element of V is
either a first element, last element or both a successor and a predecessor.
G is dense if between every two elements of V such that (a,b) € F there is
c €V with (a,¢) € F and {¢,b) € E.

4.5.9: Exercise
Write Tgrapn —formulas which define the above concepts.

4.5.5 Words and Sets of Words as Structures

Let WFF the structure of well formed propositional formulas as defined
in section 4.2.

4.5.10: Exercise

81

(i) For every of the arioms Al, A2, A3 of Propositional Logic find a for-
mula ¢ a1 (Paz, pas) with two (three, one) free variables which defines
the instances of this ariom over WFF.

(ii) Use the above to find sentences which say that the arioms are sound.

(iii) Find, analogously, a sentence ¢prp which expresses that Modus Po-
nens is sound.

4.5.6 Data Structures of Computer Science

Stacks and Queues differ only in as much as what one puts in last into a
stack gets out first (LIFO), whereas in queues what puts in first gets out
first as well (FIFO).

4.5.11: Exercise

(i) Find a Tstaer —formula ¢arom with one free variable which defines the
set A in ST(A).

(ii) Find a Tgueuwe formula VYarom with one free variable which defines the

set A in QU(A).

(iii) Find formulas which define the set of stacks (queues) of depth k, for
every k € N.

(iv) Define a similar formula for lists which defines the set of atoms.
Let ¢rrro be the formula

dr1ro = Yu1VuaYus((@atom (v2) A Rpush(V1,v2,v3)) = (v1 & Fpop(v3)))

and let ¢prro be the formula
Y1 YuaVusVus(drrro.a A @FIro.2)
and ¢prro1 =
((atom (v2) A Rput(Cnew, v2,v3)) = (Cnew A~ Fyer(v3)))

OFIFO2 =
((Patom (v2)A=(V1 & Cnew) ARput(V1, V2, V3) ARput (Fget (v1), v2, va)) = (va & Fger(v3))).

Note that we have ommitted some parentheses for the sake of readibility.

82

4.5.12: Exercise
Discuss to what extent the formulas ¢rrro and ¢prrpo are related to the
LIFO (FIFO) property of stacks (queues).

Let 11, 92, 93 be the following 7;5;-formulas
1/)1 = EI1)3(Rcons(v1a V2, US) A (Ftail(UB) R~ 02)),

1/)2 == EI1)3(Rcons(v1a Vg, US) A (Fhead(US) R~ Ul)),
3 = YuiVua (1 A ¢a).

4.5.13: Exercise
Discuss the logical lieus defined by 1,12 and 3 in the structure LT(A)
for various sets A.

4.5.7 &—Structures

4.5.14: Exercise
Formulate the laws and principles of sets from sections 2.1-2.4 as 7¢-
formulas.

4.5.8 Substructures

Recall the definition of universal and existential sentences from definition
4.4.13 and prove the following

4.5.15: Proposition
Let A and B be T—structures and let A C B. Let ¢ be a T—sentence.

(i) If ¢ is universal and B }= ¢ then A= ¢
(ii) If ¢ is existential and A |= ¢ then B = ¢

4.5.16: Exercise

Let @gense be the Tgrapn-sentence which says that a linear order is dense.
Show that ¢gense 1 neither equivalent to some universal nor to some eris-
tential formula.

4.5.17: Exercise
Let Temptyset be the empty vocabulary and let A, B € Str(Temptyser. Show
the following:

(i) If A is finite, then A = B iff A(Var) and B(Var) have the same

number of elements.

(ii) If A is finite, then A < B iff A(Var) = B(Var).

83

(iii) Let A be infinite and ¢ € FOL(Temptyset). Show by induction on ¢
that for every ¢ there is a qunatifier free formula oy € FOL(Temptyset)
with the same free variables as ¢ such that for every assignment

z : Var = A(Var) we have that A,z = ¢ iff A,z = ¢.
(iv) If A is infinite, then A= B iff B is infinite.
(v) If A is infinite, then A < B iff A(Var) C B(Var).

Hint. For (iv) and (v) use (iii). I

4.6 Hilbert—style Deduction for First Order Logic

In this section we present the first deduction method for First Order Logic:
Hilbert—style deduction (deduction sequences). In section 4.8 we shall see
another deduction method, Resolution with Unification. Hilbert—style de-
duction models to some extent human reasoning as practized by formally
trained mathematicians. Resolution is more machine friendly and is ex-
tremely popular in Automated Theorem Proving and Logic Programming.

4.6.1 Hilbert-style Axioms and Inference Rules

In this section we want to characterize the notion of logical consequence
of First Order Logic syntactically. For simplicity we define our deduction
sequences only for formulas built with the connectives —, the logical con-
stant F and the quantifier V. The remaining connectives and quantifier are
used as abbreviations (macros) according to the following list:

(i) —¢ stands for ¢ — F;
(i) (¢ Vv ¥) stands for ((¢ — F) = 1);
(iii) (¢ A ¥) stands for ((¢ — (¥ = F)) = F);
(iv) Jui¢ stands for ~Vv;—g;

4.6.1: Definition (The axioms)

(i) Let B(p1,...,pn) be a propositional formula in WFF_, g which is a
propositional tautology. Let ¢1, ..., ¢, be T-formulas. Let ¢ be the T-
formula B(¢1,...,¢n) obtained from B by replacing each occurrence
of the propositional variable p; by ¢;. Then ¢ is an ariom.

(ii) If ¢ and ¢ are T-formulas, v; be a variable which does not occur free
m ¢. Then
(Vvi(¢ — o) — (¢ — Yui0)) is an axiom.

84

(iii) If ¢ is a T-formula, s : Var — Term(r) be a function with s(v;) =t
and s(vj) = v; for every j # i, then (Vvi¢(v;) — subst(¢,s)) is an
aziom, provided that no variable v; (j # 1) that occurs in t has a
bounded occurence in ¢.

4.6.2: Definition (Proof Sequences)
Let X be a set of T-formulas and ¢1, ..., ¢, be T-formulas. We say that
1, ..., ¢n 15 a proof sequence over X if for each ¢ < n one of the following

holds:

(i) ¢i €X;
(ii) ¢; is an axiom;
(iii) (Modus ponens) There are k,l < i such that ¢; = (¢ — ¢:);

(iv) (Generalization) There is k < i such that ¢p = Y(v;) and ¢; =
Yo subst(y(vy), s), provided that

(iv.a) v; not free in any of the formulas of 3,
(iv.b) s : Var — Var is a function such that s(v;) = vy and s(vy) =

vy, for every h £ 1 and vy, does not occur at all in .

We write ¥ & ¢ if there is a proof sequence ¢1, ..., ¢ over some Xy C X
such that ¢, = ¢.

4.6.3: Definition (Deducible formulas)

Let ¥ be a set of T-formulas. We define the set Ded(X) by ¢ € Ded(X) iff
YF .

4.6.4: Proposition (Soundness of Proof Sequences)
If ¢ € Ded(X) then X | ¢.

Proof:. For the case of the axioms obtained from tautologies of Proposi-
tional Logic and for Modus Ponens the proof is the same as for Proposi-
tional Logic. Axiom (ii) follows from proposition 4.4.5 on moving quanti-
fiers and axiom (iii) from proposition 4.4.7 on substituting bound variables.

We are left with the generalization rule (exercise). I

4.6.5: Notation
Let ¢(v;) be a T—formula. We shall freely write ¢(v;) for subst(¢(v;), s) with

s(v;) = v; when ever it should be clear from the context what is meant.

4.6.6: Exercise

85
(i) Show that ¢(v;) tf Yv;¢(v;).

(ii) Let ¢ be a T-formula. Pick your favourite ¢ and write it down ex-
plicitely. Find a proof sequence for (Yvi¢(vi) — Yv;é(v;)) for your
specifically chosen ¢ and v; not occurring in ¢.

4.6.7: Examples (Exercise)
Prove the following statements:

(i) Ded(®) is a subset of the first order tautologies.
(ii) Ded({F}) = FOL(T) for every vocabulary .

(iii) Let ¥ be infinite and ¢ € Ded(X). Then there is a finite subset
Yo C X such that ¢ € Ded(Zg).

4.6.8: Definition
We say that a set of T-formulas ¥ is inconsistent if X = F. If ¥ s not
wmnconsistent, we say . 1s consistent.

4.6.9: Remark
Note, by the soundness of proof sequences, that if ¥ is inconsistent, then X
1s not satisfiable.

4.6.2 Manipulations of Proof Sequences

The following are useful properties for the manipulation of proof sequences.

4.6.10: Proposition—Exercise
Let Xg C X be two sets of T-formulas and ¢ be a T-formula.

(i) If So b ¢ then S+ ¢;

(ii) If ¢1,¢2,...,¢n is a proof sequence over ¥ then for each i < n we
have that ¥ + ¢;.

(iii) If X F ¢ and X & (¢ =) then T F ¢.
(iv) If X+ (¢ = (0 =) and T+ (¢ — 0) then T F (¢ —).

4.6.11: Proposition (Deduction Theorem)
Let X2 be a set of T-formulas and ¢, be two T-formulas.

LE(¢—=v) df TU{s}F .

Proof:. (i) Assume X - (¢ — ¢). We have to prove that XU {¢} - ¢. By
proposition 4.6.10 (i) above we have X U{¢} F (¢ — ¢) and, using modus
ponens, X U {¢} F .

86
(i1) Assume X U {¢} F 9.

There are two cases:

1. © F ¢ without using ¢. As (¢ — (¢ = ¢)) is a tautology, we have,
using Modus Ponens, ¥ F (¢ — ¢).

2. Otherwise, let ¥y C ¥ such that there i1s a proof sequence 11 .. .4, over
Yo U{é} for ¥, = 1b. We have to show that there is a proof sequence over
Yy for (¢ —). This would imply Xt (¢ — 1). We proceede by induction
on n.

Basis: n = 1. X I/ ¢ so the only possibility left is ¢ = ¢. In this case
(¢ — ¢) is a tautology and we conclude Xy F (¢ — ¢).

Closure: If the last step in the proof sequence is justified by an axiom
instance or an hypothesis from X U {¢} we proceed as in the first case or
the basis.

If the last step is an application of Modus ponens then there are 1 < k1 <n
so that

Y= (s =).
By induction hypothesis

Yo b (¢ — n)
and

Yo (¢ = (v =).

As in the proof of the deduction theorem for Propositional Logic we con-
clude

Yok (¢ =),

If the last step is an application of the generalization rule with ¥ (v;), 1 <
k <nand ¢ = 41 = Yuj¢i(v;), we have by induction hypothesis

Yo F (¢ = Yr(v)).

Also v; is not free in ¢ or any formula of ¥y (otherwise the application of
the rule would not have been legal). This allows us to derive

Voi(é — ¥ (vi))
by generalization and then
Yo b (¢ = Vit (vi))
using the axiom instance

Vi (¢ = Y (v))) — (¢ = Yoith(vi))

and Modus ponens. Now, remembering the tautology

(Vvsthp (vi) = Yvve(vy))

87

we conclude

Eo F (d) — ij1/)k(vj)).

4.6.12: Proposition—Exercise (Dychotomy Theorem)
Let X2 be a set of T-formulas and ¢, be two T-formulas.

Ifboth SU{é}F o and SU{(¢ — F)} F ¢ then S F .

4.6.13: Hint
Use the Deduction Theorem.

Proof sequences capture the essence of proofs and can be used for similar
formulas in the following sense:

4.6.14: Exercise
Let ¥ C FOL(r), ¢ € FOL(r) and s : Var — Term(r) be a substitution.
Prove that, if X F ¢, then

{subst(y,s) 1 € T} I subst(¢, s).

4.6.3 Completeness and Compactness

The following shows that the method of proof sequences is sufficiently pow-
erful to obtain all tautologies, or, more generally, all logical consequences
of a given set of formulas.

4.6.15: Theorem (Completeness theorem for Deductions)
Let X2 be a set of T-formulas and ¢ be a T-formula.

IfY = ¢ then T+ 6.
The proof will be given in subsection 4.6.4.

4.6.16: Corollary (Compactness Theorem)
Let 33 be an infinite set of T-formulas. X 1s satisfiable iff every finite subset
Yo C X is satisfiable.

Proof:. By the completeness theorem above X is satisfiable iff X 1s consis-
tent. Clearly, if ¥ is consistent, so is every finite subset 3y C X. Conversely,
assume ¥ is inconsistent. By definition and example 4.6.7 (iii) there is a
finite subset X1 C X such that F € Ded(X;) and therefore ¥ is a finite

inconsistent subset. I

As a first application of compactness we have

4.6.17: Theorem (Finitely Definable Classes)
Let K C Str(r) and K = Str(r) \ K. The following are equivalent:

88
(i) K is finitely definable.
(i1) K is finitely definable.
(iii) Both K and K are definable.

Proof:. Exactly as the corresponding theorem for Propositional Logic. I

More applications of the compactness theorem may be found in the next
visit to the museum, section 4.7.

4.6.4 Proof of the Completeness Theorem

The proof of the completeness theorem 4.6.15 comes in several stages. We
first observe that 1t suffices to prove that X is satisfiable iff ¥ is consistent.
In other words

4.6.18: Lemma

Assume that for every set of T-formulas X2, X is satisfiable iff X is consis-
tent. Then for every set of T-formulas ¥ and every r—formula ¢ T = ¢ iff
Y F .

Proof. Use the deduction theorem. I

Next we need a set theoretic lemmas:

4.6.19: Lemma

Let 7 = Uz’eN 7 with 7¢ C 75 for ¢ < j. Let 35,1 € N be a family of
1i-formulas such that for each i € N X; is consistent and X; C X;41. Then
Y =X is consistent.

Proof. ¥ is consistent. For, otherwise, there is a finite deduction sequence
showing inconsistence over some finite subset X C . But then there is an

1 € N with ¥; inconsistent. I

Next we introduce the notion of maximally consistent sets of formulas.

4.6.20: Definition
Let X2 be a set of T—formulas. Y is maximally consistent if ¥ is consistent
and for every T—sentence ¢ ¢ € X or 0¢ € X.

4.6.21: Lemma
Let X2 be a consistent set of T—sentences. Then there is a maximally con-
sistent set of T—senlences X* with X C X*.

89

Proof. Let {¢;} be an enumeration of all 7—sentences.

Let ¥ = X.

Let X,41 = X, U {¢,} if it is consistent, and Let X,41 = X, U {—¢,}
otherwise.

Use the Deduction theorem to show that for each n € N X,, is consistent.
Now let X* be the union of all the ¥,,. ¥* is consistent by lemma 4.6.19.
To show that ¥* is maximally consistent, let ¥ be a 7—sentence. ¥ = ¢y
for some k € N. But then either ¢ or =% is in ¥ 41 and therefore in X*.

4.6.22: Examples

(i) Let A be a t-structure and Th(A) = {¢ € FOL(7) : A |= ¢}. Then
Th(A) is mazimally consistent. To see this we note first that Th(.A)
is satisfiable (by A), and therefore consistent, by the soundness of
the deduction rules. Now let ¢ be a T-formula without free variables.
Clearly, either A = ¢ or A = —¢. Therefore either ¢ € Th(A) or
—¢ € Th(A), which shows that Th(A) is mazimally consistent.

(ii) Let X be a consistent set of T—formulas such that for every two -
structures A, B with A =X and B =X we have that A = B, i.e for
every T-sentence ¢ we have that A |= ¢ iff B |= ¢. Then Ded(X) is

mazimally consistent. (Erercise, similar to the above).

4.6.23: Definition
A constant T—term s a T—term without free variables.

4.6.24: Definition

Let ¥ be a set of T-sentences. We say that ¥ has enough witnesses if
for every T—formula ¢(v;) with v; the only free variable in ¢ there is a
constant T—term t such that if Jv;¢(v;) € ¥ then ¢(t) € . Here ¢(t) is an
abbreviation for the result of substituting t for v; in ¢.

4.6.25: Lemma

Let X be a countable consistent set of T—sentences. Then there is a count-
able vocabulary 7+ and a countable consistent set of 1-sentences X which
has enough witnesses.

4.6.26: Lemma

Let X be a countable consistent set of T—sentences. Then there is a count-
able vocabulary ™% and a a countable set of T#-sentences ©# which has
enough witnesses and is mazrimally consistent.

Proof:. Use lemma 4.6.21 and lemma 4.6.25. I

90

4.6.27: Lemma
Let X2 be a countable set of T—sentences not containing the equality symbol.
If X has enough witnesses and 1s mazimally consistent, then X 1s satisfiable.

The proof of the completeness theorem 4.6.15 now proceeds as follows.

e Assume X 1s consistent.

e Using, lemma 4.6.26 we can find ¥* with ¥ C ¥* such that ¥* is
magqximally consistent and has enough witnesses.

e Using lemma 4.6.27 we conclude there is a 7*—structure A with A |=
DI

e Regarding A as a 7—structure we conclude that A4 E X.

4.6.5 The Case with Equality

We have shown the completeness theorem only for formulas with equality.
In this section we shall expand the deduction rules and the proof of the
completeness theorem to formulas with equality.

4.6.28: Remark
Not done in the course. To be completed.

4.7 Visit to the Museum: Non—Definability
4.7.1 Finite Structures
4.7.1: Exercise

(i) Write down sentences ¢, over 7 = () which say that there are at least
n different elemnts.

(ii) Let Tiny = {¢n : n € N}. Show that E;,¢ is satisfiable.

(iii) Let X C SENT(r) for some not empty 7. Assume that MOD(X)
contains arbitraridy large finite models. Show that XU X;, ¢ is finitely
satisfiable.

4.7.2: Exercise
Use the previous exercise to show that

(i) The class of finite graphs is not definable.
(ii) The class of finite orders is not definable.
(iii) The class of finite fields is not definable.

91
Show the following

4.7.3: Proposition
Let K C Str(7) be a class of finite structures. Show that the following are
equivalent:

(i) K is definable.
(ii) K is finitely definable.

(iii) There is an n € N such that every A € K has less than n elements.

4.7.2 The Real Numbers

Recall that 74015 is the vocabulary {F,, F., R<,co,c1} consisting of two
binary function symbols, one binary relation symbol and two constant sym-
bols and R as a 74.;¢p—structure 1s the Arithmetic Structure of the Real
Numbers.
We write n for 1 + ...+ 1. n represents the natural number n in R.
N—_——

n
We write ty, for the term Fy(c1 Fo(... 4+ Fy(er,¢1)...). ty is a term whose

n—1
interpretation in R is the natural number n in R. Now R satisfies the
Archimedean Property, 1.e. for every z,y with 0 < x and 0 < y there is an
n such that y < nx* z.

4.7.4: Proposition

There is no Tarith -formula i which expresses the Archimedean property. In
other words, for every set of Tapitn-formulas ¥ such that R |E X there is
a Tarith-structure B with B = X which does not satisfy the Archimedean
Property.

Proof. We use the compactness theorem. Let ¢y be a new constant symbol.
Let ¥ = {tn <ca2:n €N} Let Th(R) = {¢ € SEN(14ritr) : R |E ¢}
Claim: T'= Th(R) UX is satisfiable.

Let 2y = {tn < 2 :n < m} and T, = Th(R)U Xp,. Let X be a
finite subset of I". Then there is an m such that X C T,,. We define the
Tarith U {ca }—structure R, as follows: All symbols of 7,55, are interpreted
as for R. The constant cs is interpreted as the interpretation of the term
tm. Clearly, R,, E T,,, so X issatisfiable. Using the compactness theorem,
we conclude that 7' is satisfiable. So let B = T'. It is now easy to see, that

B does not satisfy the Archimedian Property.

92
4.7.3 The Natural Numbers

Recall that the 74.5:p—structure A is the Arithmetic Structure of the Nat-
ural Numbers. The natural numbers satisfy the Induction Principle:

Induction Principle For every X C N such that 0 € X and whenever
n€ X then+1€ X, then X = N.

We now show that the Induction Principle is not expressible in first order
logic. More precisely

4.7.5: Proposition

There 15 N0 Tpeano-formula o which expresses the Induction Principle. In
other words, for every set of Tpeano-formulas ¥ such that Npeano E X there
iS @ Tpeano-structure B with B = X which does not satisfy the Induction
Principle.

Proof. We use the compactness theorem. Let ¢y be a new constant symbol.
Let ¥ = {tn < ¢2 : n € N}. Let Th(Npeano) = {¢ € SEN(Tpeano) :
Npeano ': ¢}

Claim: T' = Th(Npeano) U X is satisfiable.

Let ¥, = {tn < ¢2 : n < m} and Tp, = Th(Npeano) U Xp,. Let X be a
finite subset of 1I'. Then there is an m such that X C T;,,. We define the
Tpeano U{ca}—structure N, as follows: All symbols of Tpeano are interpreted
as for Npeano. The constant cs is interpreted as the interpretation of the
term ty,. Clearly, N, | T, so X is satisfiable. Using the compactness
theorem, we conclude that 7' is satisfiable. So let B |= T It is now easy to
see, that B does not satisfy they Induction Principle. Let X C B(Var) be
the set {n : n € N}. Clearly, X satisfies the hypothesis of the Induction

Principle, but B(es) ¢ X. |

4.7.6: Remark
The same proof also works for N as a Tapiip-structure.

The best we can do in first order logic in describing the Induction Prin-
ciple consists of writing down each instance for it for which X is definable
as a formula. This is what we have done in section 4.5.

4.8 Unification and Resolution

In this section we discuss a second deduction method, Unification and
Resolution, which extends the Reslotion Method of Propositional Logic.

4.8.1: Remark
Not treated in the course, to be completed

