Learning Deterministic Weighted Automata with Queries and Counterexamples

Gail Weiss, Yoav Goldberg, and Eran Yahav

Goal: Probabilistic Deterministic Finite Automata (PDFAs) for Language Modeling

Proposed Solution: Active Learning (WL*: Adaptation of L* to Weighted Case)

Results: SPiCe Languages

Our method is often best for large synthetic tasks, and n-grams dominate over all methods on real world tasks.

Results: Unbounded History

When a language requires unbounded history to make predictions, n-grams cannot reconstruct it, while PDFA and WFA learning methods can

Algorithm Details

Building a Hypothesis

Partition \(P \) into states (clusters) \(C \) satisfying determinism and \(\tau \)-equality

Membership Queries

(Expanding the Observation Table)

A table \(O_{P,3} \) of last-token probabilities is expanded until it is closed and consistent

Closed:

Taking a "transition" from any prefix in \(P \) will reach a row that is \(\tau \)-equal to one already in \(O_{P,3} \)

\(\tau \)-equality:

Make sure not to put prefixes that are not \(\tau \)-equal (in \(O_{P,3} \)) in the same cluster

Consistent:

Taking a "transition" from two \(\tau \)-equal prefixes in \(P \) will reach rows that are also \(\tau \)-equal to each other

Example:

Taking a "transition" from \(a \) to \(b \) is not consistent

Fix: add \(\alpha \) to \(P \)

Details

Fix: add \(\alpha \) to \(P \) (so \(\epsilon \) and \(\alpha \) are not \(\tau \)-equal any more)

Try it yourself:

https://github.com/tel-ia/weighted-ata