
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Estimating Types in Binaries
using Predictive Modeling

Omer Katz
Technion, Israel

omerkatz@cs.technion.ac.il

Ran El-Yaniv
Technion, Israel

rani@cs.technion.ac.il

Eran Yahav
Technion, Israel

yahave@cs.technion.ac.il

Abstract
Reverse engineering is an important tool in mitigating vulnerabili-
ties in binaries. As a lot of software is developed in object-oriented
languages, reverse engineering of object-oriented code is of critical
importance. One of the major hurdles in reverse engineering bina-
ries compiled from object-oriented code is the use of dynamic dis-
patch. In the absence of debug information, any dynamic dispatch
may seem to jump to many possible targets, posing a significant
challenge to a reverse engineer trying to track the program flow.

We present a novel technique that allows us to statically de-
termine the likely targets of virtual function calls. Our technique
uses object tracelets – statically constructed sequences of opera-
tions performed on an object – to capture potential runtime behav-
iors of the object. Our analysis automatically pre-labels some of
the object tracelets by relying on instances where the type of an ob-
ject is known. The resulting type-labeled tracelets are then used to
train a statistical language model (SLM) for each type. We then use
the resulting ensemble of SLMs over unlabeled tracelets to gen-
erate a ranking of their most likely types, from which we deduce
the likely targets of dynamic dispatches. We have implemented our
technique and evaluated it over real-world C++ binaries. Our eval-
uation shows that when there are multiple alternative targets, our
approach can drastically reduce the number of targets that have to
be considered by a reverse engineer.
Categories and Subject Descriptors F.3.2(D.3.1)[Semantics of
Programming Languages: Program analysis]; D.3.4 [Processors:
compilers, code generation];
Keywords x86; static binary analysis; reverse engineering

1. Introduction
New software is released daily. Most software is delivered in binary
form, without sources. To check that critical software is free from
vulnerabilities and back-doors, it is often manually inspected by
experts who try to understand how it works. Those experts gain an
understanding of the binary via the difficult and tedious process of
reverse engineering.

When reverse engineering a binary, the main goal is to under-
stand the control and data flow of the program. This task is made

more difficult when dealing with binaries originating from object-
oriented code [49]. One significant challenge is indirect calls to dy-
namically computed targets which hide the target of a call that will
be reached at runtime. Finding the right target typically requires
the reverse engineer to manually examine each one of the possible
targets, a process that is expensive and time consuming. The goal
of this work is to assist the reverse engineering process by auto-
matically identifying the real targets of those indirect calls. Specif-
ically, given a standard stripped (no debug information), possibly
optimized, binary which uses dynamic dispatch, our goal is to stat-
ically infer the likely targets for each indirect call site in the binary.
Since the target of a virtual call is directly determined by the type
of the object used in the indirect call, this is done by identifying the
likely types of the objects.
Our Approach. We present a framework for statically predicting
likely types of objects in stripped binaries, and use it to determine
likely targets of indirect calls.

We use object tracelets—statically constructed sequences of
operations performed on an object—to approximately capture its
potential runtime behaviors. Using statistical language models
(SLMs) [48], we measure the likelihood that sets of tracelets share
the same source. We then rank the possible types for an object ac-
cording to maximum likelihood. The underlying assumption is that
objects with a similar set of object tracelets should be considered
as being of a similar type.

This idea is similar in spirit to “duck typing,” used in dynamic
languages where the type of an object is determined by its methods
and properties (fields in C++) instead of being explicitly defined.
However, rather than looking only at the presence of methods and
fields, we consider their actual usage sequences as reflected in
object tracelets. In fact, because there is no debug information,
we cannot rely on correspondence between names of methods
and fields, and can only rely on how they are being invoked and
accessed as reflected in tracelets.

A distinguishing feature of our approach is that we do not
require an exact match of sets of tracelets to consider two objects as
being of the same type. Rather than relying on qualitative similarity
metrics (e.g., identity or containment), we define a quantitative
probability metric between sets of object tracelets. There is no
guarantee developers will always use objects of a certain type in
the same way. The quantitative probability metric allows us to
overcome slight but legitimate changes in the way a objects of
a certain type are used across the binary and slight changes and
optimizations made by the compiler, by approximating the usage
model from which the tracelets originated.

To the best of our knowledge, ours is the first work to use pre-
dictive modeling to capture and represent the behaviors of different
types and objects in a binary and match objects to types based on
these models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
c© 2016 ACM. 978-1-4503-3549-2/16/01...$15.00

http://dx.doi.org/10.1145/2837614.2837674

313



The combination of object tracelets and predictive modeling
provides a powerful tool to capture usage, behaviors and charac-
teristics of objects and types in a binary. This combination can also
be extended to measure similarity between whole programs, rather
than between objects. The SLMs can also be used to compute likely
shared models for type behaviors, from which a behavior-based
type hierarchy can be deduced.
Existing Techniques. Static analysis of binaries is known to be a
hard problem (e.g., [7, 45, 47]). A lot of past work has focused on
identifying variables and aggregate type information [5] in binaries
with no debug information. Very little work has attempted to match
targets to call sites or types to objects. We address this challenge,
which we believe to be very valuable in practice. We do not attempt
to recover all aggregate structures in the program, or to identify
all variables. Nor do we try to force a single target for each call
site or a single type for each object. Rather, we produce ranked
lists of likely types per object, based on statistical language models
(SLMs), and from these deduce ranked lists of likely targets per call
site (see Section 4 for details). A similar problem was previously
discussed in [4] but with poor results.

We draw some inspiration from classic work on reconstruction
of aggregate types in COBOL [41]. This work showed that unique
usage and access patterns can be used to accurately split aggregate
types into smaller atomic types. We rely on unique probabilities of
sets of patterns and match them against types found in the binary.

We produce our rankings statically without executing the binary.
Dynamic approaches cannot reach the same level of coverage of the
binary as static approaches. Additionally, dynamic approaches can-
not track all the events we wish to track and at the same granularity
without prohibitively slowing down the program.
Main Contributions. This paper makes the following contribu-
tions:

• We introduce a new approach to dealing with the difficult task
of reverse engineering binaries, using predictive modeling and
statistical approaches. This approach can be also applied to
other difficult reverse engineering tasks.
• We show that object tracelets can accurately determine the type

of an object, and thus the targets of indirect calls, even in real-
world binaries where extensive optimization and stripping have
been applied and no debug information is present.
• We show that SLMs are a viable model for representing object

behavior. We use them as a tool to measure correlation between
objects and types and estimating types of objects.
• We implement our approach and evaluate it over real-world

stripped binaries. We were able to reduce the number of likely
targets to fewer than 3 for over 80% of virtual call sites over all
benchmarks.
• We provide a simple static solution, with high success rates,

diminishing the need to manually reverse engineer binaries.

2. Overview
In this section, we provide an informal overview of our approach.
We use a simple example for illustrative purposes. More realistic
examples can be found in Section 6.
Type as a statistical model of behaviors. In this paper we
describe a type/object not by its name or its fields and functions but
by the way it is used. The description of an object is the behavior
it exhibits, as represented by sequences of actions applied to the
object, and similarly for types. We refer to these descriptions as
implicit types, and use them to train models that represent the types.
In stripped binaries, there are no variable names, and no source

language structure. As a result, there are fewer structural hints to
rely on, and the behavior takes a more prominent role.

Such object and type descriptions can be used to answer dif-
ficult questions in a statistical manner, using classification based
on our trained models. In this paper we discuss an application of
our approach to determining probable targets for virtual calls, and
probable types for objects, in stripped binaries.

We note that the choice of which actions are recorded as part
of a behavior, which kind of statistical model to use, and how
to solve the classification problem are all design choices. For ex-
ample, the statistical model could be a fixed-rank n-gram model,
some sort of a blended model employing Katz’s backoff [14, 28],
or other variable-order Markov model (VMM) implementations. In
our evaluation, we show that picking a variable-order model is su-
perior to using a fixed-order (as expected), but even within the dif-
ferent choices of variable-order model algorithms, our experience
indicates that certain implementations perform better than others.
Virtual Function Tables (vtables). The virtual table of a C++
class contains function pointers to all of the class’s virtual method
implementations. Virtual tables support dynamic dispatch by allow-
ing a runtime choice of which function implementation to invoke.
Whenever an object invokes a call to a virtual method, the actual
call target is selected by referring to the virtual table of the appro-
priate class. The notion of an explicit type in this paper refers to the
low-level concept of a vtable created for each class by the com-
piler, and a the size of memory allocated for the class’ instances.
Problem Definition. Given a program in the form of a standard
stripped binary b, we denote by VC(b) the set of all virtual calls in
b, and by V F(b) all the possible targets of virtual calls. Our goal is
to estimate for each virtual call vc ∈ VC(b) the likelihood that its
target is some function vf ∈V F(b).

Towards that end, we have to solve the intermediate problem of
estimating the likely types of objects. We use points-to analysis to
obtain a set of abstract objects denoted by Ob jects(b) (specifically
pointers to objects) in the binary b, and extract the set Types(b)
of explicit types (virtual function tables) in the binary. We would
like to estimate, for each o ∈ Ob jects(b) and t ∈ Types(b), the
likelihood of o being of type t, that is, Pt(o) where Pt(o) is the
probability that o matches the model M(t) which represents type t.
Motivating Example. Consider the simple example sendInt
shown in Fig. 1. This C++ function takes two parameters: a socket
and an integer. If the int parameter is non-zero, the function sends
its value using the socket. Otherwise, it sends a default value. The
function returns an error code produced by the socket operations.
This function yields the unoptimized x86 assembly code of Fig. 2.
We assume the function was compiled using Microsoft’s Visual
Studio compiler [2] and uses the application binary interface (ABI)
set by the compiler for 32-bit x86 binaries (see Section 5 for
details). For this example, we use unoptimized assembly code as
it is easier to understand. However, we note that our technique also
works on optimized code and was evaluated on optimized binaries.

The code receives two arguments, [esp+4] (corresponds to the
Socket argument) and [esp+8] (corresponds to the int argument).
For simplicity, we omitted from the assembly code some instruc-
tions, such as prolog, epilog, and other compiler added instructions
that do not deal with the objects of the function.

The virtual calls to connect, send, and sendDefault result in
the calls in lines 7, 16 and 23 respectively. These calls implement
the C++ dynamic dispatch of virtual functions, where the target
of the call is only determined at runtime. Our goal is to statically
determine the possible targets for these calls by inferring the likely
explicit types for the objects (corresponding to objects from the
source code) on which they are invoked, [esp+4] in this case.

314



1 class BasicSocket { // socket interface
2 virtual void connect() = 0;
3 virtual void receive() = 0;
4 virtual void close() = 0;
5 int errorCode , address;
6 };
7 class MySocket : public BasicSocket{
8 virtual void send(int n);
9 virtual void sendDefault();

10 int msgCounter;
11 };
12 class MinimalSocket : public BasicSocket {
13 virtual void send();
14 };
15 class OneWaySocket : public BasicSocket {
16 int msgCounter;
17
18 };
19 class MyFile {
20 virtual void close();
21 virtual void open();
22 virtual void seek(int n);
23 virtual void remove();
24 virtual char* read();
25 virtual void write(char* str);
26 char *name , current , *path;
27 int size;
28 MyFile* parent;
29 };
30
31 int sendInt(MySocket* s, int x) {
32 s->msgCounter = 0;
33 s->connect();
34 if (x) {
35 s->send(x);
36 } else {
37 s->sendDefault();
38 }
39 return s->errorCode;
40 }
41
42 int readLast(char* data) {
43 MyFile* f = new MyFile();
44 f->open();
45 f->seek(f->size);
46 return f->current;
47 }

Figure 1: Class definitions and example codes using MySocket and
MyFile. Function sendInt send a value determined by input through
a socket and function readLasT returns last character of a file.

Illustrating Our Technique. The main idea of our technique is
to statically compute a set of object tracelets for each object in
the program, and use the computed set of tracelets as an implicit
object type. Note that in stripped binaries all types share a common
namespace for fields and virtual functions – the offsets. Under this
namespace all types structurally resemble each other and the only
difference between the types is the order and sequences of actions
(rather than the kinds of actions), as embodied in our tracelets.

Our technique consists of four steps:

1. Given a program in the form of a stripped binary b, we iden-
tify explicit types Types(b) in b. For each t ∈ Types(b),
instances(t) is a set of objects of type t (see Section 4.2 for
details). From instances(t) we extract T T (t) = tr1, tr2, ..., a
set of tracelets for t, known as “type tracelets,” such that
tri = σi,1,σi,2, ... and σi, j ∈ Σ, as defined in Section 3.2.

2. We build a set of statistical language models {M(t)|t ∈Types(b)}
by training M(t) on the corresponding T T (t).

3. For each o∈Ob jects(b) we extract OT (o), a set of tracelets for
object o, known as “object tracelets.”

1 mov eax, [esp+4]
2 mov [eax+16], 0
3 mov eax, [esp+4]
4 mov edx, [eax]
5 mov ecx, [esp+4]
6 mov eax, [edx]
7 call eax ; virtual call
8 cmp [esp+8], 0
9 jz branch

10 mov eax, [esp+8]
11 push eax
12 mov eax, [esp+4]
13 mov edx, [eax]
14 mov ecx, [esp+4]
15 mov eax, [edx+12]
16 call eax ; virtual call
17 jmp merge
18 branch:
19 mov eax, [esp+4]
20 mov edx, [eax]
21 mov ecx, [esp+4]
22 mov eax, [edx+16]
23 call eax ; virtual call
24 merge:
25 mov eax, [esp+4]
26 mov eax, [eax+4]

Figure 2: Assembly code generated for function sendInt. Lines
7,16,23 match the function invocations at lines 33,35,37 of Fig. 1.

4. For each o ∈ Ob jects(b) we rank all t ∈ Types(b) according
to Pt(o) = ∏s∈OT (o) Pt(s) such that Pt(s) is the probability of s
originating from the model M(t). The highest ranked type t is
pronounced the most likely type for o.

Extract Object Tracelets. We begin by identifying the abstract
objects in the function. We rely on a simple points-to analysis to
determine aliasing between registers and memory locations that
(may) correspond to object references. For the code of Fig. 2 there
is a single object of interest, [esp+4], referred to henceforth as o1
(identification of objects is described in Section 5.2):

• The register eax in lines 3, 12 and 19 points to o1.
• The register edx in lines 4, 13 and 20 points to [o1], which is

the virtual table of o1, located at offset 0 in the object’s memory.
• The register eax in lines 6, 15 and 22 eventually points to an

entry in the virtual table of o1, and that entry is the call target.

Statically Tracking Events for Objects of Interest. We focus on
object o1. Because eax in line 1 points to o1, we can determine that
the “mov [eax+16],0” instruction in line 2 assigns the value 0 to a
field of o1. Similarly, we statically determine that, since eax in line
25 also points to o1, the “mov eax,[eax+4]” instruction in line 26
reads a value from a field of o1. Overall, we statically observe the
following explicit events: (i) a write to field at line 2, (ii) a read
from field in line 26, (iii) virtual calls at lines 7,16 and 23.

We also observe 6 implicit events in this example: (i) an access
to the object’s virtual table (read of the field in offset 0) in lines 4,
13 and 20, and (ii) the object is used as the this pointer (pointed to
by ecx) in lines 5, 14 and 21. Overall, 11 events are performed on
the tracked object.

We employ a points-to analysis that allows us to determine the
accesses to objects in the binary (we discuss the analysis further
in Section 5). Our analysis statically tracks the events as they
appear in the function and extracts sequences of events (the object
tracelets) as a representation of the object’s behavior. The tracked
event sequences are illustrated in Fig. 3a. The nodes in the figure
represent the events and the superscript numbers correlate to the
relevant line of assembly code. The events are marked as follows:

315



(a) object o1 (b) MyFile (c) MySocket

Figure 3: Example tracelets for object o1 extracted from function
sendInt, type MyFile from function readLast, and type MySocket.

1. W(x) – write to field of object at offset x
2. R(x) – read from field of object at offset x
3. C(x) – call to virtual function of object at offset x
4. this – object was used as this pointer

Additional kinds of events are explained in Section 3.
The two extracted sequences will be used as our object tracelets.
Computing Reference Types. To match the object tracelets we

collected with an explicit type, we need reference data on which to
train our SLMs. We build the reference data by collecting object
tracelets correlating to objects for which the explicit type can be
determined. We call these tracelets “type tracelets.” An explicit type
can be determined when, for example, we observe the allocation or
initialization of the object.

The function readLast in Fig. 1 is part of the same binary as
sendInt. This function yields the x86 assembly code of Fig. 4. For
simplicity, we omitted some instructions (prolog, epilog, etc.) from
the assembly code. Similarly to the extraction of object tracelets
for the object o1 of sendInt, from this function we can extract
the tracelet in Fig. 3b for the object represented by the value of
[f]. Because [f] holds the return value of the constructor of type
MyFile, we know that [f] is of type MyFile and we associate the
tracelet in Fig. 3b with type MyFile (See Section 4.2 for details).

In a similar manner we found additional locations where we
could determine the types of objects and associate their correspond-
ing tracelets with the relevant types. Fig. 3c shows an example
tracelet collected for the type MySocket.

Correlating Implicit and Explicit Types. We match different
objects (implicit types) and (explicit) types based on the probability
that their sets of tracelets originated from the same model. We
create a model based on the set of tracelets corresponding to the
explicit type and match the tracelets of the object to that model, as
described in Section 4.3.

Since we are looking to find o1’s actual allocated type, we can
immediately eliminate BasicSocket as a candidate because it is
an interface. Interfaces have purely virtual functions (without any
concrete implementation), which have a unique representation in
the binary and cannot be allocated.

Because some actions are not feasible for certain types, such
as reading a field at an offset that doesn’t exist, some types are
unlikely to be the type of an object. Such types cannot be candidates
for o1’s type. Consider the set of tracelets we extracted for the
object o1. These tracelets access a field at offset 12, the third field of
the object, and call a function at offset 16, the fifth virtual function
of the object. The type MinimalSocket does not have a third field
and the type OneWaySocket does not have a fifth virtual function.

1 push 16
2 call new
3 mov ecx, eax
4 call MyFile::MyFile
5 mov ecx, eax
6 mov [f], ecx
7
8 mov eax, [f]
9 mov edx, [eax]

10 mov ecx, [f]
11 mov eax, [edx]
12 call eax ; virtual call
13 mov eax, [f]
14 mov ecx, [eax+16]
15 push ecx
16 mov edx, [f]
17 mov eax, [edx]
18 mov ecx, [f]
19 mov edx, [eax+8]
20 call edx ; virtual call
21 mov eax, [f]
22 mov eax, [eax+8]

Figure 4: Assembly code generated for function readLast. Lines
12,20 match function invocations at lines 44,45 of Fig. 1.

We use this knowledge to determine that the types MinimalSocket
and OneWaySocket cannot be candidates for o1’s type.

From now on, we focus only on the likely candidates of o1’s
type, MySocket and MyFile.

The SLM models we use to match objects and types are VMMs.
When sequences and dependencies in the data are not known to
have a fixed length, as is the case in our scenario, VMMs are a
natural model to use. Our VMMs are based on an n-gram model
with smoothing and backoff mechanisms. We note that n-gram
models are, in essence, Markov models of fixed-order n−1, where
the probability of an event is determined based solely on the n−1
events that preceded it. The backoff mechanism transforms the
fixed-order n-gram model to a variable-order Markov model by
allowing to revert to a lower-order model when the current model
doesn’t hold enough data. Specifically, we use the prediction by
partial match (PPM) algorithm [15].

We compute the probability that each of o1’s tracelets from
Fig. 3a originated from the resulting models (according to the for-
mulas in Section 4.1) and multiply the results to get a score for the
entire set (as explained in Section 4.3). Using the trained models,
the probability that o1’s tracelets originated from MySocket’s model
is found to be drastically higher than the probability that they orig-
inated from MyFile’s model. We thus see that MySocket’s model is
more likely to be the origin model, meaning that MySocket is more
likely to be o1’s type. This result matches the actual type declared
in the code in Fig. 1.

Knowing the likely type of o1 is MySocket, we can now deduce
that the likely targets of the virtual calls in lines 7,16 and 23
of Fig. 2 are the relevant implementations of MySocket’s functions.

3. Object Tracelets
In this section, we discuss the notion of object tracelets. First we
briefly describe the dynamic dispatch mechanism used for virtual
function calls. We then define the set of actions we track and
describe the method used to extract object tracelets.

This section assumes the technical aspects of analyzing the bi-
nary, locating objects and types, and determining events are known.
In this section we only discuss the general notion of object tracelets
as used in the context of our technique. The technical details can be
found in Section 5.

316



Table 1: Descriptions of the events tracked by our analysis

Event Description
C(i) Call to a virtual function at offset i in the object’s virtual table
R(i) Read from a field at offset i in the object
W (i) Write to a field at offset i in the object
this Object passed as this pointer to a function.

Object-oriented code uses a special pointer known as the this
pointer for functions of class instances. This pointer is used to
store the address of the class instance currently in use.

Arg(i) Object passed as i-th argument to a function
ret Object returned from called function

call( f ) A call to a concrete function f .
Marks the possible existence of actions on the object outside
the scope of the current function. Relevant mostly when the
object is used as an argument or as this pointer.

3.1 Virtual Functions and Dynamic Dispatch
Virtual functions are a mechanism of object-oriented code that al-
lows the program to choose the desired implementation at runtime.
When calling a virtual function, the implementation that will be
executed is determined according to the actual runtime type of the
object used and not necessarily according to its declared type. This
mechanism is implemented using dynamic dispatch.

A type’s virtual functions are translated to a virtual function
table, which contains pointers to the code of all the virtual functions
of the type. Instances of that type hold a pointer to the virtual
functions table, which is assigned by the type’s constructor at
instance initialization. For example, in our setting, the constructor
will assign the address of the virtual table to the object’s first field.

When calling a virtual function, the program first accesses the
object’s stored pointer to get the relevant virtual function table. An
offset into the table is selected, according to the required virtual
function, from which the virtual function address is retrieved, to
which the program then jumps. When examining a virtual function
call in a binary, what can be observed is a pair of reads from
memory and a jump to an address stored in a register. There are no
indications of the actual virtual table and/or virtual function used.

3.2 Tracelets and Events
The notion of tracelets has been previously discussed. Nonetheless,
the tracelets we use are unique and have never been used before.
Previous research (such as [17, 43]) used tracelets as sequences of
commands taken directly from the binary. Our notion of tracelets
employs higher-level events that are tracked on objects, referred to
as object tracelets.

Given a binary, we analyze all its functions and maintain a set
of explicit object tracelets for each object found by our analysis.
The events tracked are described in Table 1. These events are used
as our alphabet Σ. An object tracelet is a sequence of events. We
note that because we model assembly operations, an event may be
the result of multiple assembly instructions.

3.3 Extracting Tracelets
By analyzing the binary, we identify and mark possible objects
in the code. For each marked object o, we symbolically execute
the binary using the object as a symbolic value ô. The symbolic
execution tracks any usages, accesses and actions performed on
the symbolic object. Each execution path taken by the symbolic
execution leads to a sequence of events. These sequences, which
were tracked on ô, are used as the object tracelets of the object o.

Our symbolic execution ignores branch conditions, meaning
that even if it is impossible for a certain branch to be traversed in
runtime, we will traverse this branch and extract sequences from it.

In real (optimized) code such branches are highly unlikely as they
would usually be optimized out of the binary.

Because our object tracelets are intra-procedural, when encoun-
tering calls and returns we do not follow them. Instead we record
the relation between the call/return and the object as events (for ex-
ample, virtual call on an object, object passed as argument, etc.)
along with the call itself (for non-virtual calls, as a call( f ) event).
The call( f ) event contains the address of the concrete function
called. In that way we use all the knowledge available to us from
the binary. We evaluated whether including the address of the con-
crete function has an affect on our results. Experiments on a sample
of our benchmarks showed the effects to be mostly marginal.

The sets of type tracelets are constructed as the union of all
tracelets of objects predetermined to belong to the same type (as
described in Section 4.2).

Object Tracelets of MySocket instance. We examine
the function sendInt from Fig. 1. This function deals
with the object s of type MySocket. From our sym-
bolic execution for object s we get two object tracelets:
(i) W (msgCounter),C(connect),C(send),R(errorCode), and
(ii) W (msgCounter),C(connect),C(sendDefault),R(errorCode).

For simplicity, we left the events of the above example as high-
level actions (with field and function names). When translated to
the appropriate stripped assembly level object tracelets, we get the
tracelets from Fig. 3a.

4. Classification by SLMs
In Section 3, we showed how to extract object tracelets for each
object in the binary. In this section, we show how to assign objects
to their likely types. First, we give a brief background of SLMs
and VMMs in Section 4.1. In Section 4.2, we show how to map a
set of object tracelets to a specific type in cases where the type is
explicitly used in the program. Then, in Section 4.3, we use VMMs
to build a ranking of possible types for each object.

4.1 Statistical Language Models
In this work we use statistical language models to rank the possible
types for an object.

Let Σ be a finite alphabet, and suppose we are given a training
sequence qN

1 = q1q2 · · ·qN , qi ∈ Σ, assumed to have emerged from
some unknown stochastic source. Our goal is to learn a probabilis-
tic model P that will be able to assign probability P(σ|s) to any fu-
ture symbol σ ∈ Σ given any past s ∈ Σ∗. The model P can then be
used to evaluate the likelihood of any test sequence xT

1 = x1 · · ·xT
using the law of total probability, P(xT

1 ) = ΠT
i=1P(xi|x1 · · ·xi−1).

We can thus utilize P for analysis, prediction and inference. This
ability is the main criterion a model has to meet to fit our needs.
Moreover, given a number M of different training sequences as-
sumed to have emerged from M different sources, we can build M
separate models, one for each source, and use them for classifica-
tion and ranking of new test sequences.

A bottleneck when considering a fixed order model is that over-
estimating or underestimating the most effective order k can be
harmful. On the one hand, the size of the training sample required
to obtain an accurate model grows exponentially with the order k,
so overestimation is problematic in the absence of a sufficiently
large training sequence. On the other hand, small order modeling
often fail to capture important behaviors that can only be charac-
terized by sufficiently large contexts. In many real-world settings,
any fixed-order model cannot faithfully approximate the sequences
at hand. In such cases the (unknown) source can often be modeled
more accurately by several sub-models having different orders.

Variable-order models alleviate the need to correctly guess a
single fixed order and are able to handle variable length depen-

317



dencies that simultaneously capture both small and large contexts.
Generally, when variable order dependencies are present, simpler
models, such as fixed-order models, are not sufficient and variable-
order models are needed.

Variable-order Markov Models In this work we utilize Markov
models, which are often the tool of choice for modeling complex
sequences whose statistical characteristics are not well understood.
The Markovian assumption, on which Markov models are based,
states that the probability distribution of the next symbol in a
sequence depends solely on the current state. This assumption is
highly appropriate for describing real-world objects, as we explain
in Section 4.3.

In a fixed-order Markov model over some finite alphabet Σ, the
conditional probability P(σ|s) is assumed to equal P(σ|s′), where
s′ is a suffix of s of some fixed length. Using a maximum likelihood
approach, the training of order-k Markov models involves estimat-
ing conditional distributions with respect to all possible suffixes
of length k. Variable-order Markov model (VMM) algorithms can
adaptively determine the effective dependency lengths based on the
data itself, and therefore the set of fixed-order sub-models required
to represent the data.

In this paper we rely on n-gram models with smoothing and
backoff mechanisms (which we refer to as variable-order n-gram
models), specifically the well-known prediction by partial match-
ing (PPM) technique1 [15].

Typical variable-order n-gram models assume a known upper
bound D on the Markov order. The main idea is to blend together all
Markov models of orders 0 ≤ k ≤ D using the backoff mechanism
(which allows reverting to a lower-order model when the current
model doesn’t hold enough information). When constructing Pk,
the order-k model, for each string s of length k, we allocate a
small probability mass Pk(backoff |s) for all symbols that did not
appear after context s in the training sequence, and would require
applying the backoff mechanism. Thus, the backoff mechanism is
constructed to satisfy the following recursive relation,

Pk(σ|s = xk
1) =


Pk(σ|s), if sσ appeared

in the training
sequences;

Pk(backoff |s) ·Pk−1(σ|xk
2), otherwise.

For the final model we define P(σ|s)=PD(σ|s) and P(σ|ε)= 1/|Σ|,
where ε is the empty sequence.

Variable-order n-gram models differ in the way they assign
probability mass to the smoothing and backoff mechanisms and
to sub-model conditionals, Pk(σ|s). Our PPM implementation uses
the well-known PPM-C method [37], but quite a few other meth-
ods could be used instead, including Katz’s well-known backoff
model [14, 28]. Since our approach does not depend on a specific
VMM algorithm, it could benefit from integrating more advanced
algorithms (e.g., PAQ8 [34]).

VMMs (and some other Markov models) differ from most other
machine learning tools (e.g., SVMs) in that VMMs do not rely on
explicit feature generation. VMMs are supplied with sequences of
letters from a pre-defined alphabet. The VMM then automatically
generates its own feature set in the form of “contexts” – subse-
quences of alphabet letters. This means the choice of alphabet sym-
bols can be viewed as kind of rudimentary feature generation. One
of the beauties in VMMs is their ability to automatically aggregate
symbols to contexts of variable length, upon which predictive con-
ditional probabilities are extracted from the data.

1 In the context of PPM-related literature, “backoff” is termed “escape”.

4.2 Correlating Implicit and Explicit Types
We consider the set of tracelets associated with an object as the
implicit type of the object. Explicit types are represented by the
addresses of virtual function tables (vtables) in the program. We
use V T to denote the set of starting addresses of vtables in the
binary. For each address vt ∈ V T , we define f unctions(vt) to be
the number of functions in the vtable. For each address vt ∈ V T ,
size(vt) captures the allocation size of objects that use this vtable
(determining the size is explained in Section 5.6).

Our goal is to map the implicit type of an object into a ranking
of likely explicit types. More formally, we use Ob js to denote
the set of objects. We then compute a mapping ltypes : Ob js→
P (V T ×R), which maps each abstract object to pairs of explicit
type and likelihood score.

Our technique is based on the observation that it is possible to
automatically and statically determine the explicit types for some
of the objects in the program, and thus automatically label some of
the tracelets. That is, we can compute a function etypes : Ob js→
V T , mapping some objects to an explicit type, thus establishing a
connection between a known explicit type (address of a vtable) and
an implicit type (a set of tracelets). We use these labeled tracelets
to train a statistical model used to predict types for other tracelets.

Identifying the explicit type of an object is possible in the
following two cases:
• An address of a virtual table is assigned to a field of an object.

Such assignments are typical in object allocation, as allocated
objects contain a reference to their relevant virtual table.
• The object is represented by the initial value of the ecx register

at the start of a virtual function vf . In such cases, we mark the
object as belonging to the type associated with the virtual table
containing vf since, as a convention of x86 binaries, ecx is used
to pass the this pointer to member functions of classes.

We propagate the marked types to calling functions. Since prop-
agating the types through the entire binary is infeasible, this is a
limited propagation intended to return the types to functions that
call constructors. The limited propagation propagates the marked
types a few levels up the call hierarchy leading to the current func-
tion. Specifically, our implementation propagates to 2 levels.

We define a function T T : V T → P (Σ∗), which maps a type
(vtable address) to a set of tracelets. The set of tracelets for vt ∈V T
is defined as the union of tracelets for objects that use this vtable.
That is, T T (vt) =

⋃
etype(o)=vt OT (o).

4.3 Ranking Types
We rank the possible types for an object according to the probabil-
ity that the object’s tracelets are the output of the same model that
created each type’s tracelets.

Defining the SLMs. We define the SLM’s alphabet symbols as
the set of all unique actions we find in our tracelets. Each action
corresponds to a different symbol. Thus the tracelets are sequences
of letters that the VMM’s inner model can parse and analyze.

The contexts and the states accompanying them correspond to
the sequences of previous actions applied to the object. This notion
perfectly describes the states of real-world objects. Consider, for
example, an object instance of type Socket. The object can be in
one of several states, either uninitialized, initialized, connected or
closed. The state of the object is determined by the actions applied
to it. If we apply a connect action, the object will be in a connected
state. Each state of an object instance defines a set of legal and ille-
gal actions. These actions can be directly translated to a probability
distribution for that state. For example, the probability distribution
of a Socket in the connected state will assign some probability to
the actions send, receive and close, and 0% probability to actions

318



such as init. Thus the Markovian assumption evidentally holds for
real-world objects.

Building the SLMs. We train a SLM instance for each type.
Training is conducted by inputting the type’s tracelets to the SLM
learning algorithm, which generates a probabilistic model for this
type. We do that for each type separately, resulting in a trained SLM
instance for each type. These SLMs are used as a reference point
with which we compare the implicit types of the objects.

Calculating object-type score. The match score for each object-
type pair is the probability that the tracelets corresponding to the
object originated from the model corresponding to the type.

Given an object o and a type t, we compute the probability

Pt(o) = ∏
s∈OT (o)

Pt(s)

such that the function OT maps an object to the set of object
tracelets for that object. Given a type t, Pt(s) returns the probability
that the sequence s originated from the statistical language model
M(t), representing t, as calculated by the SLM.

For each object o and each type t we compute the score Pt(o),
which we use as a likelihood score and rank the possible types for
each object according to that score.

Alternative match score. We considered an alternative means of
calculating a match score of an object-type pair. In this alternative,
in addition to training a model for each type, we would also train a
model for each object. We would then calculate a distance between
the models (for example, using the Jensen-Shannon divergence [31]
as our distance metric) and use that as the match score. We even-
tually decided against this approach as the objects have relatively
fewer tracelets compared to most types, and this will result in de-
generate models that will not properly describe the objects.

Compatibility of types. We split the set of possible types for each
object into 2 subsets: (i) compatible types, and (ii) incompatible
types. The incompatible types can be predetermined as not the
correct type for an object; thus the final ranking will only consider
compatible types. The ranking of the compatible types will be
explained in Section 4.3.

The division into subsets is based on insights gained from our
analysis as to the structure of each type as well as on additional
methods described in Section 5.

Given an object tracelet t, we define f ields(t) to be the set of
integer offsets of all W (i) and R(i) events in the tracelet. Given
a set of object tracelets ot, we define f ields(ot) = ∪t∈ot f ields(t).
Similarly, f unctions(t) is the set of integer offsets into the vtable
used when calling a virtual function in C(i) events of the tracelet t.
We define f unctions(ot) as f unctions(ot) = ∪t∈ot f unctions(t).

Given a set of object tracelets ot, corresponding to an object o,
and given an explicit type vt, we say that the explicit type is an
incompatible match to the implicit type when:

max( f ields(ot))≥ size(vt) or

max( f unctions(ot))≥ f unctions(vt).

That is, if the maximum offset used in field accesses in a tracelet
is higher than the type’s allocated memory size, or if the maximum
offset in a tracelet is higher than the size of the type’s virtual table,
we know that this type cannot be a match. In such cases, the explicit
type will be classified as incompatible.

In practice, only the remaining types, which were not marked as
incompatible, need to be ranked.

4.4 Other Models
The choice of VMMs for classifying tracelets to a type is well mo-
tivated by the reported success of VMMs in modeling sequences in

a variety of other application areas such as natural language pro-
cessing [51], proteomics [11], web query recommendations [24],
music analysis [39], and behaviometric identification [38]. In such
problems, the objects to be analyzed are naturally represented as
sequences of variable length over some finite alphabet and can be
effectively characterized via finite order Markov dependencies.

We now discuss a few other possible models we have tested/-
considered.

Edit-Distance Metrics. Edit-distance metrics are a well-known
tool in sequence analysis and have been previously explored on
related problems, such as the rewrite engine of [17].

The basis of an edit-distance metric is the assignment of a cost to
each edit operation needed to align/match the two sequences. The
costs of operations are typically preassigned using domain knowl-
edge (i.e., they are not learned from the data). As such, deletion/re-
placement of an important letter usually costs the same as that of
an unimportant letter. Assigning different costs to operations/letters
according to the problem domain is possible. However, in our do-
main, the importance of letters differs between different parts of a
problem and cannot be addressed in advance, as it might depend on
both the context and the state of the problem.

Furthermore, when encountering an instance of a parent type,
the metric can’t distinguish between the parent and types inheriting
from it. This is because all valid uses of a parent type are also valid
uses of any inheriting type, and thus the inheriting type’s set of
tracelets will contain the set of the parent type. In such cases, the
edit distance metric will assign the same rank to all related types.

Other Predictive Models. Machine learning offers a plethora of
other approaches for learning variable length sequences beyond
generative probability models such as VMMs and HMMs. Several
families of techniques were proposed to allow the handling of se-
quences within discriminative models, such as support vector ma-
chines (SVMs) and other kernel methods, which are typically very
effective in constructing sharp and accurate decision boundaries,
but require fixed feature vector representation. The basic ingredi-
ent shared by all kernel methods, including SVMs, is the kernel
function that, intuitively, quantifies the similarity between pairs of
objects to be analyzed. Beyond the technical requirement (of pos-
itive semidefiniteness), such kernel functions should be efficiently
computed without losing useful information. Notable examples of
such kernel methods are string kernels [16, 19, 32, 50] and Fisher
kernels [25].

Other viable probabilistic methods for structured prediction in-
clude graphical models such as Bayesian networks, factor graphs,
and conditional random fields (CRFs); these methods have been ef-
fectively applied in various domains. While many graphical models
are generative and attempt to explicitly model a joint probability
distribution P(y,x) over a vector x of input variables and a vector
y of outputs, CRFs, much like logistic regression, are discrimina-
tive, and attempt to model only the conditional distribution P(y|x),
which is sufficient for classification. In particular, CRFs [54] have
been recently used successfully in a related problem of predicting
program properties [42].

Comparing models. Most of the mentioned models are relatively
complex and require either a relatively large training set and/or
tuning of hyper-parameters (e.g., SVMs). We opted to use VMMs
after concluding that other models lack the necessary training data
or are too complex for our needs. VMMs provide us with predictive
modeling that is simple enough to use and understand while still
allowing the flexibility to capture dependencies and probabilities
that would otherwise go unnoticed if a simpler model was used.

Similarly, edit-distance metrics are simply too crude to reflect
the slight differences between different contexts which use the
same letters. VMMs can learn weights and probabilities from the

319



actual data and are thus able to adapt to changes mandated by dif-
ferent contexts. For example, when dealing with type hierarchies,
sets of inheriting types can contain tracelets not present in the par-
ent type’s set. The VMMs of the parent type and the inheriting types
will, therefore, differ from one another. In such cases, VMMs will
be able to reduce the number of similarly ranked types.

5. Prototype Implementation
In this section we describe our implementation and the different
steps it consists of.

5.1 Base Analysis
Our technique is based on the product of a static intra-procedural
Steensgaard-style points-to analysis [53]. Given a binary, our anal-
ysis computes for each function the set of states possible in each lo-
cation of the function. Each state holds the values for each register,
memory address and stack offset. Addresses, offsets and values are
represented by expressions uniquely determining their actual val-
ues in terms of the initial values given at function entry point. States
corresponding to the same location may differ due to different exe-
cution paths. Our analysis is similar in spirit to symbolic execution.
It can viewed as a simple symbolic executor tailored specifically
for the extraction of tracelets. It does not aim to mimic the abili-
ties of other symbolic executors, such as floating-point arithmetic.
Our analysis suffers from similar problems as symbolic execution,
which it deals with using similar tricks. However, because our anal-
ysis is strictly intra-procedural, it remains practical.

Unlike other works that have used points-to analysis (such as
[6, 22] and others), we use a simpler analysis suited to our needs.
Since we deal with binaries produced from a standard compilation
model, we know that some operations will have no effect on our
results and can be ignored. Such operations include, for example,
binary-and and binary-or, which in our setting should not be part
of an expression representing an actual object in the binary.

Our analysis was geared towards the ABI set for 32-bit x86
Windows binaries compiled using Microsoft’s Visual Studio com-
piler [2]. Most challenges our analysis faces are due to the C++
language and constructs. However, knowing the ABI does sim-
plify certain aspects: the location of function arguments (last values
pushed to the stack prior to the call) and the offset of the virtual ta-
ble pointer in the object are determined by the ABI. The ABI is
also reflected in the patterns we look for when searching for virtual
function tables, objects, virtual function calls, field accesses, etc.
The analysis is the only part of this work whose implementation
is architecture specific; the remainder of our technique is oblivious
to the ABI. The analysis was implemented to handle 32-bit x86
assembly. It can be modified to deal with other ABIs since both
the patterns we look for and the locations we search can be easily
switched. We note that, given a binary, there are known techniques
for detecting most public compilers and ABIs, and therefore we
do not consider our ABI assumption a drawback. Our analysis is
based on the disassembly provided by IDA [1] and can handle un-
optimized and optimized builds. Compiler optimizations of bina-
ries are, in fact, mostly beneficial to our technique, as the extensive
inlining makes our tracelets longer and more descriptive.

We chose to focus on Windows binaries because we believe
this is the common and harder case in which the source code is
unavailable and our technique is needed.

5.2 Finding Objects in the Code
In order to find the objects used in the code we use the prod-
uct of our base analysis. We go over the states collected during
our analysis and search for call target expressions matching the
pattern of a virtual call. The pattern we look for is of the form

Table 2: Identification of tracked events by our analysis

Event Explanation
C(i) Matching the call target to the virtual function call pattern

described in Section 5.2
R(i) A field of the object is used as the right operand of an

operation
W (i) A field of the object is used as the left operand of an

operation (such as mov)
this ecx pointing to the object at the location of a call operation.

Arg(i) Finding the object on the stack as maintained by our
analysis at the location of a call operation

ret Matching return values in registers (eax) to an object
call( f ) A call command to a known address

[[OBJECT]+OFFSET]. Any expression used in a call instruction and
matching this pattern is considered a call to a virtual function, and
the part of the expression matching the OBJECT is considered a can-
didate for an object expression.

To eliminate as much noise as possible, we filter out some of
the object expressions, keeping only those that match the following
structure:

Ob js := Regs | Z | [Ob js] | (Ob js op Ob js) ,

where op ∈ {+,−}. Other expressions (such as where op ∈ {∗,/})
are extremely unlikely to result in a real object originating from
the source code and are most likely noise resulting from compiler
structures and the like.

The fact that our analysis is entirely static allows us to also eas-
ily and cheaply track accesses to fields of objects. After finding all
objects in the code used for virtual function calls (and objects with
a predetermined type, as explained in Section 4.2), we go over the
states and search for field access patterns. The field access pattern
is [OBJECT+OFFSET], that is, a dereference to an address positively
offset to the beginning of the object. We find all expressions of the
field access pattern whose OBJECT section matches an object expres-
sion and mark them as field accesses, either read or write.

5.3 Identifying Events
Table 2 explains for each of the events from Table 1 how we iden-
tify them and when we add them to our tracelets. The descriptions
in the table assume the use of the ABI mentioned in Section 5.1.

5.4 Applying Analysis
Consider lines 19-23 from Fig. 2. By analyzing these lines, and
assuming the initial value for esp is denoted by ESP. we will obtain
the following mapping after line 23:
• edx→ [[ESP+4]]
• ecx→ [ESP+4]
• eax→ [[[ESP+4]]+16].

From the mapping above we can determine that the target of the
call in line 23 is [[[ESP+4]]+16].

Using the pattern from Section 5.2, we determine that this call is
to a virtual function of the object [ESP+4] at offset 16. Since [ESP+4]
also matches our object filtering pattern we consider it as a valid
object and will estimate a type for it. We mark this event as C(16).

Before type estimation, we need to collect all data for this
object. By re-examining the mapping above, we identify several
additional events: (i) the assignment to edx is a read of the object’s
field at offset 0, marked as R(0), and (ii) the object is used as the
this pointer as determined by the value of ecx, marked as this.

5.5 Finding Virtual Tables in the Binary
A virtual table is represented in the binary as a sequence of pointers
to functions. The address of the first entry is used as the address of

320



the virtual table. Those locations that use the virtual table address
as immediate values are usually either constructors or destructors
of the type. We analyze the binary and search for such sequences
(of any length) which we mark as virtual tables.

5.6 Determining Allocated Size of Types
By iterating over the references to the virtual tables we found,
we collect all the constructors and destructors of a class. The
main difference between constructors and destructors is that the
latter usually results in the object being deleted. We identify the
address of the delete operator (in stripped binaries as well), and
by backtracking up the call hierarchy leading to it, we separate the
constructors from the destructors.

Using our analysis we can determine the expression represent-
ing the object initialized by the constructor. We backtrack along
the path leading to the constructor call until we find the point of
allocation (static or dynamic) of the object.

In the case of a dynamic allocation, determined by a call to
the new operator, we can determine the allocated size by checking
the state of the stack as maintained by our analysis. The last value
entered into the stack is the allocated size.

In the case of a static allocation we determine the allocated size
as the distance between this object to the next statically allocated
object. This process might result in the determined value being
higher than the real value for the allocation size. When we use
this value to classify incompatible type candidates (Section 4.3),
the higher value might result in a false positive (meaning types are
incorrectly considered as compatible candidates), but would never
result in a false negative.

6. Experimental Evaluation
In this section we describe the benchmarks we used to evaluate our
technique and present our results.

6.1 Benchmarks
We tested our implementation on 20 open source projects collected
randomly from public internet source control repositories, such
as sourceforge. The benchmarks included mostly executables (exe
files) and a few dynamic libraries (dll files) written in C++. We
compiled the benchmarks from source code as 32-bit binaries on a
Windows machine using Microsoft’s Visual Studio compiler [2] as
release builds (which are optimized and stripped by default).

Most of our benchmarks were collected after our technique
was implemented. Other than the desired ABI, no aspect of the
benchmarks was known in advance. We used a small fraction of
our benchmarks to calibrate our technique and then evaluated it on
all collected benchmarks.

6.2 Experimental Design
Our experiments were designed to emulate realistic use of our tech-
nique. Thus, we took into account the typical workflow of a reverse
engineer, both in the design and evaluation of the experiments.
Design. After performing our analysis, as previously described,
and extracting tracelets, we have a labeled sets of tracelets (for
objects whose type can be predetermined by the analysis) and
unlabeled sets of tracelets (for the rest of the objects). Because
virtual calls sites whose target cannot be automatically determined
will pose the greatest challenge to reverse engineers who use our
technique, these calls are defined as our test set. We therefore obtain
a natural division of tracelets into training sets and test sets.

We used all of our labeled sets of tracelets to train the SLMs.
We then used the trained SLMs to classify the unlabeled sets of
tracelets. To evaluate our results, we manually reverse engineered
the benchmarks and manually determined the declared type of each

object. The declared type was used as the expected top ranked type
of the object. We then used this to determine the expected target of
each virtual function call. The declared types in each benchmark
were manually determined independently of our automatic reverse
engineering, and before we ran the tool on the benchmarks. This
manual effort took around 2-3 days of expert work per benchmark.

If our manual reverse engineering procedure determined an
object’s type to be that of a superclass, we defined this as the
correct type even though, in practice, the object’s type could also
be that of any of the children of that superclass. In practice, manual
examination of a sample of results where the expected type was
a superclass revealed that the children types were usually ranked
similarly to the superclass.

We note that some of the virtual call sites found in the binary
could not be used in our evaluation. These call sites relate to objects
for which we were unable to manually set a type or whose type
doesn’t exist in the binary (for example, dynamically linked types).
We were unable to set a type for an object when the assembly
operations on the object could not be associated with a command
from the source code (most often these were compiler generated
objects). In such cases, since the ranking for these objects could not
be evaluated, we excluded them from our evaluation of the results.

We ran our experiments on a Linux machine with 64 AMD
Opteron(TM) 6376 processors, each operating at 2.3GHz, and
128GB RAM, running Ubuntu 14.04. The symbolic analysis used
to extract tracelets is expensive, and took a few of hours per bench-
mark. The training and prediction parts took less than 10 minutes.
Evaluation. We evaluated our results by the number of top ranked
targets a reverse engineer would have to examine for each call
site to ensure the correct target was examined from the ranking
generated by our technique, as determined by the rank assigned to
the correct target. This metric best captures what makes a solution
to the problem we solve a useful one. As a numerical representation
of our evaluation metric, we also use the area under our coverage
curves (as described in Section 6.3).

A reduction in the number of possible targets for each call site
directly translates to a reduction in the amount of work left to the
reverse engineer. Since each examined target could result in an
entire call hierarchy being examined in full, reducing the number
of targets by even one could be a dramatic improvement.

6.3 Results
Table 3 presents the final results of the evaluation of our technique.
The rows of the table correspond to the benchmarks we tested.

The left part of the table presents general benchmark statistics
and consists of 6 values: (i) the size of the binary (in Kb); (ii) the
number of types found in the binary; (iii) the number of objects
used in the evaluation; (iv) the number of virtual call sites used in
the evaluation; (v) the total sum length of all the labeled tracelets
extracted from the binary (we later show that this is interesting as a
criterion for the technique’s success); and (vi) the area covered by
graphs such as in Fig. 5 (a numerical indication of the quality of
our results, as will be explained shortly).

The right part presents statistics of our measure of success: the
number of remaining targets per call site that need to be examined,
that is, the number of top ranked targets that need to be examined
before the correct expected target is examined (assuming the user
examines targets according to our ranking). This number is deter-
mined by the rank of the correct target and the number of targets
that were ranked at least as high as the correct one. The statistics
include the minimum and maximum number of targets, the mean,
the median, and the variance.

The rows of the table are sorted by the number of call sites
used in the evaluation. The benchmarks are split into two groups.
Above the separating line are very small benchmarks, in which it is

321



Table 3: Statistics of results from the benchmark evaluation.
The right-hand part contains statistics of the benchmark: binary size, number of types, objects and virtual call sites, total length of training
data, portion of coverage figure covered by the curve; the left-hand part shows statistics of the rank of expected targets for virtual call sites.

Benchmark Statistics Remaining Targets

binary total length of area
size (Kb) # types # objects # calls training data under curve min max mean median variance

cppcheck.exe 97 12 1 1 2057 84.6 2 2 2 2 0
patl.exe 36.5 7 1 1 351 75.0 2 2 2 2 0

pop3.exe 24 5 1 1 12478 83.3 1 1 1 1 0
smtp.exe 26 5 1 1 12442 83.3 1 1 1 1 0

td_unittest.exe 101 7 1 1 21246 75.0 2 2 2 2 0
template_regtest.exe 69 4 1 1 3719 80.0 1 1 1 1 0

AntispyComplete.exe 247 6 4 5 13745 85.7 1 1 1 1 0
tinyserver.exe 46 12 4 6 6280 89.2 1 2 1.4 1 0.24

echoparams.exe 58 12 6 7 15840 89.0 1 2 1.43 1 0.24
ShowTraf.exe 137 38 6 7 171967 76.6 1 19 9.00 10 29.14

yafe.exe 68 26 5 7 33563 92.0 1 3 2.14 3 0.98
bafprp.exe 529 32 7 8 2285 67.0 1 21 10.88 11 59.11

tinyxmlSTL.dll 88 75 14 17 4960 93.1 1 19 5.18 4 24.26
gperf.exe 84 11 10 21 41085 90.8 1 3 1.10 1 0.18

MidiLib.dll 400 96 7 26 6301 98.0 1 9 1.88 1.5 2.56
tinyxml.dll 60 51 36 37 4449 82.7 1 42 8.89 4 128.91

libctemplate.dll 1233 229 39 60 17967 84.3 1 165 35.28 12 2247.22
Analyzer.exe 419 62 78 64 97278 86.8 1 34 8.13 9 34.48

Smoothing.exe 453 71 130 306 112027 97.5 1 25 1.71 1 5.76
CGridListCtrlEx.exe 151 35 220 406 163390 95.9 1 18 1.40 1 2.90

easier to track and verify the steps of our technique. Below the line
are larger benchmarks, which we consider more interesting in the
context of the evaluation, as they better illustrate the actual value
of our technique.

The results in Table 3 show that in 14 of our benchmarks (70%)
we are able to reduce the average number of targets that need to
be examined to less than 3, even on large benchmarks where the
original number of targets is very high. When measured on all call
sites, across all benchmarks, we reduced the number of targets per
call site to fewer than 3 in over 80% of the call sites.

Let’s examine the row of benchmark “libctemplate.dll.” For this
benchmark the minimum number of remaining targets is 1 and the
median is 12. That means that for most call sites there are no more
than 11 targets that were ranked higher than the correct one, and
there are call sites for which no other target was ranked higher than
the correct one. The maximum number of remaining targets for this
benchmark is the highest among all our benchmarks (a single call
site had 165 remaining targets out of 172). Still, the benchmark
exhibits a respectable reduction overall. This can be seen by com-
paring the number of remaining functions to the number of types
in the benchmark (from the # types column), as (almost) every type
results in a possible target (types which are part of the same hierar-
chy might share the same function implementations).

The graphs in Fig. 5 give a visual representation of the number
of functions that need to be examined for each call site. Given a
ranking t1, t2, ..., tn of types generated by our technique, we select
a value x for the x–axis, and examine the top x targets from the
ranking, t1, ...tx. The graphs show the percentage out of all call
sites in the benchmark for which t1, ...tx contains the actual target.
Alternatively, a reverse engineer could use the graphs to determine
how many top ranked targets should be examined, in order to
guarantee that the correct target is examined for y% of the call sites.
We aim to maximize y while keeping x reasonably small. The faster
the curve rises (and thus covers a greater portion of the figure),
the fewer the functions that need to be examined and, therefore,
the better our results. We refer to these graphs as coverage curves.

Table 3 we can see the percentage of the graph that is under the
coverage curve; higher percentages mean better results.

The values of the x–axis vary between different graphs. The
top value of the x–axis is set according to the maximum number
of functions that needed to be examined before our technique was
used, meaning that the top value of the x-axis is determined by the
case in which all the functions need to be examined.

Smoothing.exe and CGridListCtrlEx.exe are two of our better
benchmarks, and bafprp.exe is one of our worst. We can see from
the graphs that to reach over 85% call site coverage, Smoothing.exe
and CGridListCtrlEx.exe require using the top two ranked targets
and the top ranked target for each call site, respectively, while
bafprp.exe requires 21 targets.

We find a correlation between the sizes of the training sets used
to train the SLMs and the quality of our results. As can be ex-
pected, our results improve as the size of our training set increases.
In Fig. 6 we see the distribution of types by their training set size
for the benchmarks Smoothing.exe and bafprp.exe. We can see that
bafprp.exe has many types with very small training sets while for
Smoothing.exe the portion of types with small training sets is rela-
tively smaller. This can explain the results from Fig. 5. The small
sizes of the training sets of bafprp.exe mean the resulting models
are decayed and are too similar to other models to be effective.
Other ranking methods. As discussed in Section 4.4, we con-
sidered several other models for ranking the targets for each call
site. Two such methods, which we implemented and tested, are
edit-distance metrics and low-order fixed-length Markov models
(smoothed with the KT estimator [10, 29]). Our edit-distance met-
ric was based on the well-known Levenshtein-Damarau distance
extended to sets of tracelets using min weight matching.

Fig. 7 shows the result of these methods on the Smoothing.exe
benchmark. The figure is zoomed in to focus on the area of differ-
ence between the coverage curves. The caption includes the per-
centage of the full graph that is under each coverage curve. In this
figure, we see that a reverse engineer using our VMM-based ap-
proach will only have to consider the 2 top ranked targets to find

322



(a) Smoothing.exe (b) CGridListCtrlEx.exe (c) bafprp.exe

Figure 5: Coverage curves for 3 sample benchmarks.
The curves show the percentage of evaluated virtual call sites for which the expected target was ranked at most x. To guarantee that for y%

of call sites in a benchmark the expected target is examined, the top x ranked targets per call site should be examined.

(a) Smoothing.exe

(b) bafprp.exe

Figure 6: Histogram of types according to training set size for 2
sample benchmarks

the correct target of a virtual call in 92% of the cases. In contrast,
using a fixed length model will require the reverse engineer to con-
sider 9X more targets, that is, up to 18 targets to reach the same
percentage of calls. Using the edit-distance would force the reverse
engineer to consider up to 11X targets compared to our VMM-
based approach. Working on the binary directly, without any tool
assistance, would require the reverse engineer to consider all vir-
tual functions (at the offset used by the call) as possible targets for
this call, that is 71 targets in the worst case (roughly 30X more than
when using VMMs).

We have discussed our technique with professional reverse en-
gineers from the industry and the preliminary feedback was very
enthusiastic.

Figure 7: Comparison of coverage curves for benchmark
Smoothing.exe using different ranking methods, zoomed in on area
of difference; the VMM curve covers 95.5% of the figure, while the
fixed-order model covers 93.1% and the edit-distance covers 87.2%

7. Related Work
There has been a lot of work on reverse engineering and analysis
of binaries. In this section we briefly survey closely related work.
Analysis of Executables. Reps et al. [46, 47] explored many
aspects in the analysis of stripped binaries, and obtained impressive
results during years of work on the problem. Their analyses (e.g.,[5,
44, 45]) can recover a lot of information from a stripped binary, and
statically verify challenging safety properties. In [44], Reps et al.
present a value-set analysis (VSA) to determine memory accesses.
Our analysis borrows the notion of a set of possible values for each
variables, but instead of the standard abstract values common in
VSA, we use value expressions generated by our points-to analysis.
The work in [44] puts an emphasis on identifying all variables and
objects in the binary. In our work we identify objects of interest
based on virtual calls and focus only on these objects. Therefore in
our setting identifying the objects is simpler than in the general
case. For similar reasons, the analysis in [44] is more complex
than what we require and we use instead a simpler, more targeted
analysis, as explained in Section 5.1.

Balakrishnan et al. [7] and Reps et al. [45] presented tools that
assist reverse engineering; however, neither tackled the problem of
recovering C++ object types.

The problem of finding object boundaries in stripped binaries
is generally a hard problem. Recent work by Gopan et al. [21] ad-
dresses this problem using a static analysis and heuristics, obtaining
very good results in practice. In our work, we dealt with the closely
related problem of determining the size of allocated memory for
objects, and used an estimate as described in Section 5.6. Further-

323



more, we do not attempt to find all object boundaries and instead
use virtual calls as our basis for identifying objects.

Brumley et al. [13] presented a flexible platform for the static
analysis of binaries, and investigated a wide range of interesting
problems, including decompilation [52] and identifying functions
in binaries [9]. The technique presented in [9] uses machine learn-
ing to train a model of function start sequences and uses that to
compute function boundaries. Similarly to our work, it recognizes
that in certain settings a statistical approach is superior to standard
approaches, both in usefulness and in accuracy.

Points-to and aliasing analyses have been previously discussed
and used on binaries and assembly code in several works, such
as [3, 8, 12, 18, 46]. This kind of analysis is also used as the basis
for our work.

Lee et al. [30] presented a tool called TIE aimed at the related
problem of inferring primitive types for variables in a binary. TIE
uses inference rules that are based on the data transfers between
variables and known functions. Under our setting, the technique
of TIE would determine all objects as belonging to type pointer
without being able to determine the actual type of the object. This
result is correct, as all objects are in practice pointers to instances
of a type, but it is not accurate enough to be useful in our setting.

Preda et al. [40], Warrender et al. [56] and Mazeroff et al. [35]
have all proposed using behavioral signatures to detect malware.
They based their approaches on dynamically tracking events,
mostly API and system calls. They show that behavioral patterns
can identify intent in binaries. Bjorner et al. [20] broaden the notion
beyond malware classification and discuss matching binaries with
behavior specifications. We extend this idea further and show that
it can also be used to identify types, using the trained type VMMs
as our specifications.

Another related work, [17], used control-tracelets to find similar
code fragments across (stripped) binaries. Their control-tracelets
provide a coarser abstraction of program execution, and are not
suited to tracking the behavior of objects. In contrast, our object-
tracelets track method calls and field access events for (abstract)
objects. We borrow their notion of tracelets as a code identifier and
adapt it to our setting, to identify object types.

We note that many previous works have tackled the problem
of type reconstruction, for example [23]. The problem of type
reconstruction is conceptually similar to our problem. However, we
do not try to recreate type structures. Instead, our goal is to identify
types of objects without referring to the type structure.
Statistical Techniques. Markov models have previously been
used to classify behaviors. Jha et al. [27] used Markov models for
intrusion detection. This work depends on identifying sequences of
actions that, in other scenarios, would be improbable. We extend
this notion and rely on differences between sequence probabilities
across contexts to employ Markov models for type classification.

Raychev et al. [42] presented a statistical approach to predicting
program properties using CRFs. Their technique leverages program
structure to create dependencies and constraints used for proba-
bilistic reasoning. This works well at the source code level as a lot
of program structure is easy to recover. When working on stripped
binaries, there is much less program structure to work with, and the
beauty of our approach is that it works without the need to recover
a lot of structure (which is a hard problem). Moreover, in contrast
to [42], which, in practice, used large amounts of training data col-
lected across several programs, we use less training data, obtained
from the same program on which we perform the prediction.

Mishne et al. [36] used static analysis to extract temporal speci-
fications from a large corpus of code snippets. Their abstract histo-
ries are similar to our object tracelets. Raychev et al. [43] construct
a statistical language model for sequences of API calls in Java. The
language model is based on object histories, similar to our object

tracelets. In both works histories are easy to extract. In contrast, our
approach requires an involved analysis to construct object tracelets.

Jang et al. [26] attempted to analyze source code to detect likely
virtual call targets in order to impose restrictions on runtime targets.
This approach could be used to prevent the problem we are facing
by marking relevant targets during compilation. By analyzing the
binary, we attempt to mark the targets post-compilation. We believe
our approach is more feasible, as in many real-world scenarios it is
not possible to intervene in the compilation process.
Structural Similarity. Madsen et al. [33] suggested a technique
based on “structural similarity” of types and objects. Their tech-
nique uses the structure of objects and the names of fields and func-
tions to find a matching type. Unfortunately, these approaches do
not work in a stripped binaries setting because the binaries don’t
contain any names that can be used to latch on to and eliminate
types. Instead we use “behavioral similarity,” which takes into con-
sideration how the object is used rather than only what it can do
(i.e, what fields and functions the object has). While [33] dealt with
JavaScript programs, the technique presented in [55] suggests a
similar approach for Python programs implemented in a tool called
Mino. Similarly, this approach also relies on variable/field names
as the basis for the data. The technique of [55] suggests using clas-
sifiers to determine types of variables. However, in contrast to our
approach, the authors rely on dynamic execution to collect labeled
data and only deal with a small set of generic primitive types. They
do not deal with different kinds of objects. The authors assume that,
given field/method names, deduction of object types is easy, but in
our setting this kind of data simply doesn’t exist. Without the ex-
plicit names utilized by Mino, classification of a single type/target
isn’t reliable enough, as demonstrated by our results.

8. Conclusion
We address the problem of resolving targets of dynamic dispatches
in binaries. Given a standard stripped binary compiled from object-
oriented code, we statically infer the likely targets for virtual func-
tion calls in the binary, by inferring the likely types for the objects
used in the call.

We present a technique that uses object tracelets—statically
constructed sequences of operations performed on an object—to
approximately capture the runtime behaviors of the object. We rely
on occurrences where the type of an object is known to automati-
cally pre-label some of the tracelets. We then train SLMs for each
type in the binary and use the trained SLMs to measure the likeli-
hood that a tracelet originated from an SLM. We consider objects
whose set of tracelets is highly likely to have originated from a
type’s model as belonging to that type. Using the likelihood prob-
abilities calculated by our model, we rank the most likely types of
an object, and deduce from that the likely targets of virtual calls.

We show that object tracelets can accurately determine the types
of objects, and thus the targets of virtual function calls, even in real-
world binaries where extensive optimization and stripping have
been applied and no debug information is present. We implemented
our approach and evaluated it over real-world stripped binaries. We
show that in over 80% of virtual call sites we can drastically reduce
the number of likely targets to fewer than 3 targets per call site.

Acknowledgements
The authors would like to thank Nimrod Partush and Yaniv David
for commenting on an earlier version of this paper. The research
leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7) under grant agree-
ment no. 615688 - ERC-COG-PRIME.

324



References
[1] Hex-rays interactive disassembler (ida) pro. https://www.

hex-rays.com/products/ida/.

[2] Microsoft corporation. visual studio. https://www.visualstudio.
com.

[3] AMME, W., BRAUN, P., THOMASSET, F., AND ZEHENDNER, E.
Data dependence analysis of assembly code. Int. J. Parallel Program.
28, 5 (Oct. 2000), 431–467.

[4] BACON, D. F., AND SWEENEY, P. F. Fast static analysis of c++
virtual function callsIn Proceedings of the 11th ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and
Applications (1996), OOPSLA ’96, ACM, pp. 324–341.

[5] BALAKRISHNAN, G., AND REPS, T. Divine: Discovering variables
in executables. In Verification, Model Checking, and Abstract Inter-
pretation, B. Cook and A. Podelski, Eds., vol. 4349 of Lecture Notes
in Computer Science. Springer, 2007, pp. 1–28.

[6] BALAKRISHNAN, G., AND REPS, T. Analyzing stripped device-
driver executables. In Proceedings of the Theory and Practice of Soft-
ware, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (2008), TACAS’08/ETAPS’08,
Springer-Verlag, pp. 124–140.

[7] BALAKRISHNAN, G., AND REPS, T. WYSINWYX: What you see is
not what you execute. ACM Trans. Program. Lang. Syst. 32, 6 (Aug.
2010), 23:1–23:84.

[8] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V., LICHTENBERG,
J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI, S. K., AND US-
TUNER, A. Thorough static analysis of device driversIn Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006 (2006), EuroSys ’06, ACM, pp. 73–85.

[9] BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUMLEY, D.
Byteweight: Learning to recognize functions in binary codeIn 23rd
USENIX Security Symposium (USENIX Security 14) (Aug. 2014),
USENIX Association, pp. 845–860.

[10] BEGLEITER, R., AND EL-YANIV, R. Superior guarantees for sequen-
tial prediction and lossless compression via alphabet decomposition.
J. Mach. Learn. Res. 7 (Dec. 2006), 379–411.

[11] BEJERANO, G., AND YONA, G. Variations on probabilistic suffix
trees: statistical modeling and prediction of protein families. Bioinfor-
matics 17, 1 (2001), 23–43.

[12] BERGERON, J., DEBBABI, M., ERHIOUI, M. M., AND KTARI, B.
Static analysis of binary code to isolate malicious behaviorsIn Pro-
ceedings of the 8th Workshop on Enabling Technologies on Infrastruc-
ture for Collaborative Enterprises (1999), WETICE ’99, IEEE Com-
puter Society, pp. 184–189.

[13] BRUMLEY, D., JAGER, I., AVGERINOS, T., AND SCHWARTZ, E.
Bap: A binary analysis platform. In Computer Aided Verification,
vol. 6806 of Lecture Notes in Computer Science. Springer, 2011,
pp. 463–469.

[14] CHEN, S. F., AND GOODMAN, J. An empirical study of smoothing
techniques for language modeling. In Proceedings of the 34th annual
meeting on Association for Computational Linguistics (1996), Asso-
ciation for Computational Linguistics, pp. 310–318.

[15] CLEARY, J. G., AND WITTEN, I. H. Data compression using adaptive
coding and partial string matching. Communications, IEEE Transac-
tions on 32, 4 (1984), 396–402.

[16] CUTURI, M., AND VERT, J.-P. The context-tree kernel for strings.
Neural Networks 18, 8 (2005), 1111–1123.

[17] DAVID, Y., AND YAHAV, E. Tracelet-based code search in executa-
blesIn Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2014), PLDI ’14,
ACM, pp. 349–360.

[18] DEBRAY, S., MUTH, R., AND WEIPPERT, M. Alias analysis of
executable codeIn Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (1998), POPL
’98, ACM, pp. 12–24.

[19] ESKIN, E., WESTON, J., NOBLE, W. S., AND LESLIE, C. S. Mis-
match string kernels for svm protein classification. In Advances in
neural information processing systems (2002), pp. 1417–1424.

[20] FREDRIKSON, M., CHRISTODORESCU, M., AND JHA, S. Dynamic
behavior matching: A complexity analysis and new approximation
algorithms. In Automated Deduction - CADE, vol. 6803 of Lecture
Notes in Computer Science. Springer, 2011, pp. 252–267.

[21] GOPAN, D., DRISCOLL, E., NGUYEN, D., NAYDICH, D., LOGINOV,
A., AND MELSKI, D. Data-delineation in software binaries and its ap-
plication to buffer-overrun discovery. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on (May 2015),
vol. 1, pp. 145–155.

[22] GUO, B., BRIDGES, M. J., TRIANTAFYLLIS, S., OTTONI, G., RA-
MAN, E., AND AUGUST, D. I. Practical and accurate low-level pointer
analysisIn Proceedings of the International Symposium on Code Gen-
eration and Optimization (2005), CGO ’05, IEEE Computer Society,
pp. 291–302.

[23] HALLER, I., SLOWINSKA, A., AND BOS, H. Mempick: High-level
data structure detection in c/c++ binaries. In Reverse Engineering
(WCRE), 2013 20th Working Conference on (Oct 2013), pp. 32–41.

[24] HE, Q., JIANG, D., LIAO, Z., HOI, S. C., CHANG, K., LIM, E.-P.,
AND LI, H. Web query recommendation via sequential query predic-
tion. In Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on (2009), IEEE, pp. 1443–1454.

[25] JAAKKOLA, T., HAUSSLER, D., ET AL. Exploiting generative models
in discriminative classifiers. Advances in neural information process-
ing systems (1999), 487–493.

[26] JANG, D., TATLOCK, Z., AND LERNER, S. Safedispatch: Securing
C++ virtual calls from memory corruption attacks. In Network and
Distributed System Security (NDSS) Symposium (2014).

[27] JHA, S., TAN, K., AND MAXION, R. Markov chains, classifiers, and
intrusion detection. Computer Security Foundations Workshop, IEEE
0 (2001), 0206.

[28] KATZ, S. M. Estimation of probabilities from sparse data for the
language model component of a speech recognizer. Acoustics, Speech
and Signal Processing, IEEE Transactions on 35, 3 (1987), 400–401.

[29] KRICHEVSKY, R., AND TROFIMOV, V. The performance of universal
encoding. IEEE Trans. Inf. Theor. 27, 2 (Sept. 2006), 199–207.

[30] LEE, J., AVGERINOS, T., AND BRUMLEY, D. TIE: principled reverse
engineering of types in binary programs. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS 2011, San
Diego, California, USA, 6th February - 9th February 2011 (2011).

[31] LIN, J. Divergence measures based on the shannon entropy. IEEE
Trans. Inf. Theor. 37, 1 (Sept. 2006), 145–151.

[32] LODHI, H., SAUNDERS, C., SHAWE-TAYLOR, J., CRISTIANINI, N.,
AND WATKINS, C. Text classification using string kernels. The
Journal of Machine Learning Research 2 (2002), 419–444.

[33] MADSEN, M., LIVSHITS, B., AND FANNING, M. Practical static
analysis of javascript applications in the presence of frameworks and
librariesIn Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering (2013), ESEC/FSE 2013, ACM, pp. 499–509.

[34] MAHONEY, M. V. Adaptive weighing of context models for lossless
data compression, 2005.

[35] MAZEROFF, G., GREGOR, J., THOMASON, M., AND FORD, R.
Probabilistic suffix models for {API} sequence analysis of windows
{XP} applications. Pattern Recognition 41, 1 (2008), 90 – 101.

[36] MISHNE, A., SHOHAM, S., AND YAHAV, E. Typestate-based se-
mantic code search over partial programsIn Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications (2012), OOPSLA ’12, ACM, pp. 997–
1016.

[37] MOFFAT, A. Implementing the ppm data compression scheme. Com-
munications, IEEE Transactions on 38, 11 (1990), 1917–1921.

[38] NISENSON, M., YARIV, I., EL-YANIV, R., AND MEIR, R. Towards
behaviometric security systems: Learning to identify a typist. In

325

https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.visualstudio.com
https://www.visualstudio.com


Knowledge Discovery in Databases: PKDD 2003. Springer, 2003,
pp. 363–374.

[39] PAULUS, J., AND KLAPURI, A. Labelling the structural parts of a
music piece with markov models. In Computer Music Modeling and
Retrieval. Genesis of Meaning in Sound and Music. Springer, 2009,
pp. 166–176.

[40] PREDA, M. D., CHRISTODORESCU, M., JHA, S., AND DEBRAY, S.
A semantics-based approach to malware detectionIn Proceedings of
the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2007), POPL ’07, ACM, pp. 377–388.

[41] RAMALINGAM, G., FIELD, J., AND TIP, F. Aggregate structure
identification and its application to program analysisIn Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (1999), POPL ’99, ACM, pp. 119–132.

[42] RAYCHEV, V., VECHEV, M., AND KRAUSE, A. Predicting program
properties from "big code". In Proceedings of the 42Nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (2015), POPL ’15, ACM, pp. 111–124.

[43] RAYCHEV, V., VECHEV, M., AND YAHAV, E. Code completion with
statistical language modelsIn Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(2014), PLDI ’14, ACM, pp. 419–428.

[44] REPS, T., AND BALAKRISHNAN, G. Improved memory-access anal-
ysis for x86 executables. In Compiler Construction, L. Hendren,
Ed., vol. 4959 of Lecture Notes in Computer Science. Springer, 2008,
pp. 16–35.

[45] REPS, T., BALAKRISHNAN, G., AND LIM, J. Intermediate-
representation recovery from low-level codeIn Proceedings of
the 2006 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation (2006), PEPM ’06, ACM,
pp. 100–111.

[46] REPS, T., BALAKRISHNAN, G., LIM, J., AND TEITELBAUM, T.
A next-generation platform for analyzing executables. In Malware
Detection, M. Christodorescu, S. Jha, D. Maughan, D. Song, and
C. Wang, Eds., vol. 27 of Advances in Information Security. Springer

US, 2007, pp. 43–61.

[47] REPS, T., LIM, J., THAKUR, A., BALAKRISHNAN, G., AND LAL,
A. There’s plenty of room at the bottom: Analyzing and verifying
machine code. In Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds., vol. 6174 of Lecture Notes in Computer Science.
Springer, 2010, pp. 41–56.

[48] ROSENFELD, R. Two decades of statistical language modeling: Where
do we go from here? In Proceedings of the IEEE (2000), vol. 88,
pp. 1270–1278.

[49] SABANAL, P. V., AND YASON, M. V. Reversing C++.
https://www.blackhat.com/presentations/bh-dc-07/
Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf.

[50] SAIGO, H., VERT, J.-P., UEDA, N., AND AKUTSU, T. Protein
homology detection using string alignment kernels. Bioinformatics
20, 11 (2004), 1682–1689.

[51] SCHÜTZE, H., AND SINGER, Y. Part-of-speech tagging using a
variable memory markov modelIn Proceedings of the 32Nd Annual
Meeting on Association for Computational Linguistics (1994), ACL
’94, Association for Computational Linguistics, pp. 181–187.

[52] SCHWARTZ, E. J., LEE, J., WOO, M., AND BRUMLEY, D. Native
x86 decompilation using semantics-preserving structural analysis and
iterative control-flow structuring. Proceedings of the USENIX Security
Symposium (2013), 16.

[53] STEENSGAARD, B. Points-to analysis in almost linear timeIn Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (1996), POPL ’96, ACM, pp. 32–41.

[54] SUTTON, C., AND MCCALLUM, A. An introduction to conditional
random fields. Machine Learning 4, 4 (2011), 267–373.

[55] TU, S. MINO: Data-driven type inference for python. MIT 6.867 Fall
2012 Final Project, December 2012.

[56] WARRENDER, C., FORREST, S., AND PEARLMUTTER, B. Detecting
intrusions using system calls: Alternative data models. In In IEEE
Symposium On Security And Privacy (1999), IEEE Computer Society,
pp. 133–145.

326

https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf

	Introduction
	Overview
	Object Tracelets
	Virtual Functions and Dynamic Dispatch
	Tracelets and Events
	Extracting Tracelets

	Classification by SLMs
	Statistical Language Models
	Correlating Implicit and Explicit Types
	Ranking Types
	Other Models

	Prototype Implementation
	Base Analysis
	Finding Objects in the Code
	Identifying Events
	Applying Analysis
	Finding Virtual Tables in the Binary
	Determining Allocated Size of Types

	Experimental Evaluation
	Benchmarks
	Experimental Design
	Results

	Related Work
	Conclusion

