Principles of Computer Systems Design - 236601
Prof. Liuba Shrira

MISSION

Teach students approaches, concepts, abstractions, and techniques
that underly the design and implementation of computer software systems.

METHOD

- Lectures cover the main concepts and techniques.

The lecture material is based on
Principles of Computer System Design, by Jerome H. Saltzer and M. Frans Kaashoek,
Morgan Kaufmann, 2009 (ISBN 978-0-12-374957-4) . Background material appears in
Modern Operating Systems, by Andrew Tannenbaum, 2nd Edition, Prentice Hall
Publishers (ISBN: 0130313580) .

- Discussions go a level deeper by analysing and evaluating the design of
important software systems in class, and by comparing and contrasting case
studies of successful and unsuccessful systems.

The discussions are based on a list of selected papers in the literature.

- Hands-on assignments provide students the opportunity to poke at real
systems from outside.

- Student presentations: Occasionally, we offer an independent topic study and in-class
group presentations

to teach students topic research and oral communication skills.

Topics are matched to student interests.

OVERALL ORGANIZATION OF MATERIAL
(These topics will be covered at different depths depending on interests)

1. Complexity. The main challenge in designing computer system is
controling complexity. The first topic is therefore a discussion of the
sources of complexity in computer systems, and an overview of the
techniques to control complexity.

2. System organization. To control the complexity of computer systems a
solid organization that enforces hard modularity is needed. The

topic introduces techniques of system organization that provide or utilize

hard modularity: the client-server model, virtual memory, operating system
kernels, and threads. Material reviews concepts acquired in a basic OS class.

3. Naming. Modularity requires support for naming to allow sharing.
Computer systems employ many

different naming systems (file names, network addresses, virtual memory
addresses, etc.), some simple, some complex. The topic covers the
important issues in designing naming systems.

4. Performance. Computer systems exhibit performance problems due to
incommensurate scaling. We introduce simple performance models and
techniques to address performance bottlenecks in computer systems.

5. Networking. Computer systems function seldom in isolation; most of them
are distributed over multiple nodes and interact with other computer
systems. The topic addresses the modularity issues in designing network
protocols in the light of scalability and fault tolerance considerations.



6. Reliability. Computer system experiences failures. This topic covers
issues in designing systems that can tolerate failures. As a case study we
look at reliable storage systems.

7. Security. To control who can access what in a computer system, security mechanism
are needed

but, importantly, societal considerations need to be taken in account.

Security mechanisms and societal policies are the focus of this topic.

Abstractions, and techniques covered are not a recipe for

designing computer systems. Just applying these ideas will not necessarily
result in a good computer system. Unlike in many other subjects (e.g.,
math), many problems in computer systems do not have a clean solution. The
reason is that the goals of a design are often conflicting (e.g., a system
should be both blindingly fast and tolerate any failure); in addition,
economic goals put additional constraints on a design (e.g., it has to be

fast and cost only one dollar). To provide insight how the techniques
learned can be applied and misapplied we present many cases studies of
successful (and unsuccessful) computer system. Our hope is that you learn
from these case studies, and develop an intuition and a taste for designing
computer systems.

Since computer systems play a crucial role in society, there are also many
social and ethical problems that often need to be addresses in designing a
computer system. Sometimes these social issues are harder to address than
the technical ones. Through each of the topics we discuss the interaction

of the social and technical issues.

REQUIRED BACKGROUND

We assume you know basic programming abstractions (e.g., algorithm,
procedure call) and implementation techniques for such abstraction (e.g.,
interpreters). In addition, we assume a basic knowledge of physical
constructs to realize these abstractions (e.g., processor, memory, etc.)

as covered by a basic OS course.

Finally, we assume you have some experience with building software

for computer systems, or at least experience with using computer systems.

REQUIRED CLASS WORK

Classes meet once a week for 2 X 50 min.

Typically, students are expected to read a chapter of a book, and/or

a paper in preparation for each class, and are required to submit short answers
related to the material due for the class. Students are expected to actively
participate in the recitation part of the class, and are evaluated on class
participation. There are 2-3 quizes and 2-3 hands-on assignments.



