Program Synthesis and Automated Reasoning :DMpn DY
)01 DY NrN)D1 MNON mnn

236347 :pm1pn 19pn

A"awn 2)aN qvonp

wWNX Ny X

16:30 - 14:30 ‘2 ITINXAT MY

nwpaad 221N nyw

(TMX) Mx>ampn NN DTp menT
https://moodle.technion.ac.il/course/view.php?id=5865 DNMPN NN

DMNMPi 1NN

:DMIPYY DP9 WA D DNIPpN

NPLIND AWNN MMNON S MNIN Y N'On1a NN MNNA 0O MVw
,DT97 N2 ,0'D1aD ,NTIND 2'wnn 1952 DIRY1IN .NON May S nYnma
Satisfiability modulo ,)YWX1 170N NP 2122 NpLIND Mxn ,Type theory
.theory

Syntax- 1592 D)RRIN TN T-5Y Tip DY DMDLIK ¥ — NN Do »
Counterexample guided inductive ,mIXn1T”7ay Midn ,guided synthesis
.Type directed synthesis ,synthesis

Synquid ,Sketch ,Z3 ,Coq :D'X2N DD WIn'w Nwy™ DNpI

The course consists of two major divisions:

* Automated Reasoning: tools and techniques for formal reasoning about computer
programs and programming language semantics. Topics include: Lambda calculus,
type checking, polymorphism, Type Theory, formalizing programs in first-order
logic, Satisfiability Modulo Theory.

Program Synthesis: automatic generation of program code using by a synthesizing
compiler. Topics include: Syntax-guided synthesis, programming by example,
counterexample-guided inductive synthesis, type-directed and deductive synthesis.

Throughout the course, we will learn and use the following software tools: Coq, Z3,
Sketch, and Synquid.


https://moodle.technion.ac.il/course/view.php?id=5865

DMpn mepnT

(X K55 ,75% mnab) nn 500N NN Mannwn

(DN M¥NN 40%) N2 500N

(DN MX¥NN 60% NTNOIY DI YNy — "MIDN) DIDN LPMIA

MIaD NnwA

Formal Reasoning About Programs / Adam Chlipala

http://adam.chlipala.net/frap/
Software Foundations / Benjamin C. Pierce et al.

Volumes 1, 2 https://softwarefoundations.cis.upenn.edu

nTMY NN

— D'LITILDN ,DNMPN DI'DA

,ONMDY DLNOIN MNIPY NN DONNA NPAYa MNON YW Nan NN 12 .1
.LV1 9T DY “M51”7 NN 2% NPONNa MNn 1’2 DOTAINN NN

oy waTa ,Martin-L6f Type Theory-1 m2'0p110DNP NP0 DAINA NX 11D .2
MON-MNDN DXNINN SV NPDROP N Y 122D N oY T1ann

n)1xNd Nown ,Coq Proof Assistant myxnxa NnMayv NN NaNNInna: .3
.Dependent Types Sy NDD1AINN MNN DY NN

DD MY MYNNANID ,AWNN IMMONY MDPNY NN MN2N YY nNixn byvaimd 4
121 ;NLNIDPN NPLINDI NN NPLIND NONNA NPLIND DYPN
TN NLMLIX NN DY PPANNA 1M Coq NITY21 1N N NDN NIYL NI
SMT 521 wvinw

SY MNNNTI1DM ,NI0N YW Nrnpd Mnwn menan NN DY .5

295N MEMan 0 NNN Y2 DMy NN DMNMION

.Synquid-1 Sketch :nrND 52 5w NItya N1MON YW NrN»paInan’.

NXTNLNNI DMNNMON DY DDANNA NION DY NN D Y DNXYIINNg .7
.02DN LPMIA NDNI YTNOIY

(=]

By the end of the course, students will —

1. Understand the mathematical construction of formal proofs from first principles, and
how they differ from pen-and-paper proofs.

2. Be familiar with the terms Constructive Logic and Martin-Lof Type Theory; esp. how
they differ from classical logic(s), and the proofs-as-programs correspondence.

3. Develop skills for proving logical propositions using the Coq Proof Assistant.

4. Learn to formalize properties of computer programs using Operational and Axiomatic
Semantics, and prove such properties using both manually (in Coq) and automatically
(using SMT solvers).

5. Know the taxonomy of software synthesis techniques and representative algorithms.

. Experience program synthesis using Sketch and Synquid.

7. Design and code a synthesis tool from the grounds up, based on knowledge acquired
in class.

=)


http://adam.chlipala.net/frap/
https://softwarefoundations.cis.upenn.edu

myiav 1ab p1pn 1210 ;ma

1 Overview of Automated Reasoning and Synthesis

2 Pure Lambda Calculus

3 Simply-typed Lambda Calculus + Polymorphism

4 Theory of Dependent Types

5 Type Theory and the Curry-Howard Correspondence
6 Reasoning About Programs: Transition Systems

7 Hoare Logic

3 Satisfiability Modulo Theory (SMT) and its application to
verification

9 Synthesis: Programming By Example, Observational Equivalence

Syntax-Guided Synthesis and Counterexample Guided Inductive
Synthesis

12 Deductive and Type-driven Synthesis
13 Proof-guided Deductive Synthesis

Coq

73

Sketch

Synquid
SuSLik



