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The course consists of two major divisions:

* Automated Reasoning: tools and techniques for formal reasoning about computer
programs and programming language semantics. Topics include: Lambda calculus,
type checking, polymorphism, Type Theory, formalizing programs in first-order
logic, Satisfiability Modulo Theory.

Program Synthesis: automatic generation of program code using by a synthesizing
compiler. Topics include: Syntax-guided synthesis, programming by example,
counterexample-guided inductive synthesis, type-directed and deductive synthesis.

Throughout the course, we will learn and use the following software tools: Coq, Z3,
Sketch, and Synquid.
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Formal Reasoning About Programs / Adam Chlipala

http://adam.chlipala.net/frap/
Software Foundations / Benjamin C. Pierce et al.

Volumes 1, 2 https://softwarefoundations.cis.upenn.edu
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By the end of the course, students will —

1. Understand the mathematical construction of formal proofs from first principles, and
how they differ from pen-and-paper proofs.

2. Be familiar with the terms Constructive Logic and Martin-Lof Type Theory; esp. how
they differ from classical logic(s), and the proofs-as-programs correspondence.

3. Develop skills for proving logical propositions using the Coq Proof Assistant.

4. Learn to formalize properties of computer programs using Operational and Axiomatic
Semantics, and prove such properties using both manually (in Coq) and automatically
(using SMT solvers).

5. Know the taxonomy of software synthesis techniques and representative algorithms.

. Experience program synthesis using Sketch and Synquid.

7. Design and code a synthesis tool from the grounds up, based on knowledge acquired
in class.
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1 Overview of Automated Reasoning and Synthesis

2 Pure Lambda Calculus

3 Simply-typed Lambda Calculus + Polymorphism

4 Theory of Dependent Types

5 Type Theory and the Curry-Howard Correspondence
6 Reasoning About Programs: Transition Systems

7 Hoare Logic

3 Satisfiability Modulo Theory (SMT) and its application to
verification

9 Synthesis: Programming By Example, Observational Equivalence

Syntax-Guided Synthesis and Counterexample Guided Inductive
Synthesis

12 Deductive and Type-driven Synthesis
13 Proof-guided Deductive Synthesis
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