
On the exact learnability of graph parameters∗

Nadia Labai †

Department of Informatics, TU Wien, Vienna, Austria
labai@dbai.tuwien.ac.at

In this talk, we discuss a new direction for research in learning theory and
present proof-of-concept.

In the exact learning model, [1], the learner wishes to compute an exact
representation of some target function f in some class C. For this purpose, the
learner may query an all-powerful teacher with two kinds of queries:

1. value(x) queries, where the learner sends input x and the teacher returns
f(x), and

2. equivalent(h) queries, where the learner proposes a hypothesis h and if
the hypothesis is correct, the teacher returns “YES” and if it is incorrect,
the teacher returns a counterexample. That is, some input x such that
h(x) 6= f(x).

The class C is exactly learnable if there is a learner that computes a correct
hypothesis in time polynomial in the size of the smallest representation of f
and the size of the largest counterexample returned by the teacher.

Exact learning and Hankel matrices The exact learnability of word and
tree functions representable by weighted automata has been established for var-
ious domains, [3, 10, 2].

Exact learning algorithms for weighted automata usually rely on an algebraic
characterization of the functions they compute, using Hankel matrices. Let Σ
be a finite alphabet and let f : Σ? → R be a word function, where R is a
field or a semiring. The Hankel matrix Hf is a bi-infinite matrix where the
rows and the columns are labeled with words in Σ? and where the entry at
the row labeled u and column labeled v holds f(uv). That is, Hf ∈ RΣ?×Σ?

and Hf (u, v) = f(uv). The definition for tree functions is similar; the rows are
labeled with trees and the columns are labeled with contexts.

A typical algebraic characterization theorem relates the rank of Hf to whether
f can be represented by a weighted automaton, and its proof usually provides
a translation from Hf to the automaton which computes f , [4, 7, 5]. Then the
learning algorithm may iteratively build a submatrix of Hf using query answers
until eventually the submatrix grows to have rank large enough to extract an
automaton that computes f .

∗This is an extended abstract of [13], which was done in collaboration with Johann
A. Makowsky (Department of Computer Science, Technion IIT, Israel).
†Supported by the LogiCS doctoral program (W1255) funded by the Austrian Science Fund

(FWF).

1

1

2

3

1

2

3

1

2

3

G1 G2 G1G2

Figure 1: Two 3-labeled graphs G1 and G2, and their 3-connection G1G2

Exactly learning graph parameters A graph parameter is a function that
assigns graphs values in R which is isomorphism invariant. In our context, R is
Z,Q or R. Hankel matrices can be defined for graph parameters using various
graph operations instead of concatenation. In particular, connection matrices
are defined using the connection operation. A k-labeled graph G for k ∈ N is a
finite graph in which k vertices, or less, are labeled with labels from {1, . . . , k}.
The k-connection of two k-labeled graphs G1, G2 is given by taking the disjoint
union of G1 and G2 and identifying vertices with the same label. This produces
a k-labeled graph G = G1G2. An example is shown in figure 1.

Denote the set of graphs by G and the set of k-labeled graphs by Gk. Given
a graph parameter f : G → R, the k-connection matrix Cf,k is a bi-inifinite
matrix over R whose rows and columns are labeled with k-labeled graphs, where
the entry at the row labeled Gi and the column labeled Gj holds f(GiGj). That
is, Cf,k ∈ RGk×Gk and Cf,k(Gi, Gj) = f(GiGj).

In [9], the rank of Cf,k has been related to whether f is MSOL-definable.
For the notion of MSOL-defianability for graph parameters, see [16]. This en-
courages us to investigate the exact learnability of MSOL-definable graph pa-
rameters. However, as opposed to the algebraic characterization theorems for
weighted automata, the result in [9] is not a characterization, but more im-
portantly, its proof does not provide a translation from Cf,k to the MSOL-
expression defining f . We therefore restrict our attention to the smaller class
of graph parameters representable as a partition function.

The case of partition functions Partition functions, aka counting weighted
homomorphism functions, are a subclass of the MSOL-definable graph param-
eters.

A weighted graph H(α, β) is a graph H = (V (H), E(H)) on n = |V (H)|
vertices together with a vertex weight function α : V (H) → R, viewed as a
vector of length n, and an edge weights function β : V (H)2 → R viewed as an
n× n matrix, with β(u, v) = 0 if (u, v) 6∈ E(H).

H(α, β) defines a partition function hom(−, H(α, β)), whose value on a graph
G is defined as follows:

hom(G,H(α, β)) =
∑

t:G→H

∏
v∈V (G)

α(t(v))
∏

(u,v)∈V (G)2

β(t(u), t(v))

For example, the graph Hedge-cover depicted in figure 2 defines a function
which counts the number of covering edge sets, and H3-col, depicted in figure 3,
defines a function which counts the number of 3-colorings.

2

1 -1
1

2 1

Figure 2: Hedge-cover

1 1

1

1

11

Figure 3: H3-col

A weighted graph H(α, β) is said to be twin-free if β does not contain two
separate rows that are identical to each other. We say a partition function
hom(−, H(α, β)) is rigid if H has no proper automorphisms. Note that auto-
morphisms in a weighted graph also respect vertex and edge weights. In our
examples above, Hedge-cover is rigid and H3-col is not.

An extensive body of work on the graph algebras induced by connection
operations and partition functions, [8, 14, 15], sets up the following result:

Theorem 1 (Lovász, [14]). Let f = hom(−, H(α, β)) for a rigid twin-free
weighted graph H(α, β) on q vertices. Then Cf,k has rank qk for all k ≥ 0.

It still remains to find a translation from Cf,k to the corresponding weighted
graph H(α, β). This is done by identifying the suitable algebraic properties
underlying the proof of Theorem 1 and extracting them through somewhat
technical algebraic manipulations.

With the translation procedure in hand, we design a typical learning algo-
rithm: it maintains a submatrix M of Cf,1 used in the generation of the hy-
pothesis h from value and equivalent query results. After an initial setup of
M , in each iteration the algorithm generates a hypothesis h, queries the teacher
for equivalence between h and the target and either terminates, or augments
M accordingly and moves on to the next iteration. It is guaranteed that the
rank of M increases in each iteration, which implies the algorithm terminates
successfully after q iterations. Since each iteration takes time polynomial in the
size of the target weighted graph and the largest counterexample, we have:

Theorem 2 (L and Makowsky, [13]). The class of rigid partition functions is
exactly learnable.

We assume to be over the Blum-Shub-Smale model of computation. If f
takes values in Q rather than in R we can also work in the Turing model with
logarithmic cost for the elements in Q.

Limitation to rigid graphs The target weighted graph is assumed to be
rigid. We note that almost all graphs are rigid:

Theorem 3 ([6, 11]). Let G be a uniformly selected graph on n vertices. The
probability that G is rigid tends to 1 as n→∞.

Lifting the rigidity restriction would require the algorithm to keep a subma-
trix of the k-connection matrix, where k is determined by the target weighted
graph and is therefore unknown. However, if we can find the correct k quickly
enough, the same algorithm should apply.

3

How powerful does the teacher need to be? Computing the value of
hom(G,H(α, β)) is generally intractable (contains #P-hard problems, such as
counting colorings), but is in function polynomial time (FP) if G is of bounded
tree-width, [15, Theorem 6.48], or of bounded clique-width, [12].

As for answering equivalent queries, from [15, Theorem 6.45], we have that
the counterexamples provided by the teacher may be chosen to be of size at most
2(1 + q2)q6 where q is the size of the target weighted graph. Testing whether
a hypothesis is correct reduces to the weighted graph isomorphism problem,
which is at least as difficult as the unweighted version. It is unknown whether
this problem is in PTime.

References

[1] D. Angluin. On the complexity of minimum inference of regular sets. In-
formation and Control, 39(3):337–350, 1978.

[2] B. Balle and M. Mohri. Learning Weighted Automata, pages 1–21. Springer
International Publishing, 2015.

[3] A. Beimel, F. Bergadano, N.H. Bshouty, E. Kushilevitz, and S. Varricchio.
Learning functions represented as multiplicity automata. Journal of the
ACM (JACM), 47(3):506–530, 2000.

[4] S. Bozapalidis and O. Louscou-Bozapalidou. The rank of a formal tree
power series. Theoretical Computer Science, 27(1):211 – 215, 1983.

[5] J.W. Carlyle and A. Paz. Realizations by stochastic finite automata. Jour-
nal of Computer and System Sciences, 5:26–40, 1971.

[6] P. Erdős and A. Rényi. Asymmetric graphs. Acta Mathematica Hungarica,
14(3-4):295–315, 1963.

[7] M. Fliess. Matrices de hankel. Journal de Mathématiques Pures et Ap-
pliquées, 53(9):197–222, 1974.

[8] M. Freedman, L. Lovász, and A. Schrijver. Reflection positivity, rank con-
nectivity, and homomorphism of graphs. Journal of the American Mathe-
matical Society, 20(1):37–51, 2007.

[9] B. Godlin, T. Kotek, and J.A. Makowsky. Evaluation of graph polynomials.
In 34th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG08, volume 5344 of Lecture Notes in Computer Science, pages
183–194, 2008.

[10] A. Habrard and J. Oncina. Learning multiplicity tree automata. In Gram-
matical Inference: Algorithms and Applications, pages 268–280. Springer,
2006.

[11] J. Kötters. Almost all graphs are rigid - revisited. Discrete Mathematics,
309(17):5420–5424, 2009.

4

[12] N. Labai and J.A. Makowsky. Tropical Graph Parameters. In 26th Inter-
national Conference on Formal Power Series and Algebraic Combinatorics
(FPSAC 2014), DMTCS Proceedings, pages 357–368. Discrete Mathemat-
ics and Theoretical Computer Science, 2014.

[13] N. Labai and J.A. Makowsky. On the exact learnability of graph param-
eters: The case of partition functions. In 41st International Symposium
on Mathematical Foundations of Computer Science, MFCS 2016, pages
63:1–63:13, 2016.

[14] L. Lovász. The rank of connection matrices and the dimension of graph
algebras. European Journal of Combinatorics, 27(6):962 – 970, 2006.

[15] L. Lovász. Large Networks and Graph Limits, volume 60 of Colloquium
Publications. AMS, 2012.

[16] J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals
of Pure and Applied Logic, 126.1-3:159–213, 2004.

5

