Coding Theory: Codes, Computation, and Privacy

Netanel Raviv (California Institute of Technology)
Sunday, 28.10.2018, 14:30
Taub 601

Data intensive tasks have been ubiquitous ever since the data science revolution. The immensity of contemporary datasets no longer allows computations to be done on a single machine, and distributed computations are inevitable. Since most users cannot afford to maintain a network of commodity servers, burdensome computations are often outsourced to third party cloud services. However, this approach opens a Pandora's box of potential woes, such as malicious intervention in computations, privacy infringement, and workload imbalance.

Error correcting codes are mathematical devices that were originally developed to obtain noise resilience in digital communication. Recently, these devices have found surprising applications in solving various problems in distributed computing. This newly emerging topic, which addresses resiliency, security, and privacy issues in distributed environments through a coding-theoretic lens, is often called coded computing. In this talk I will survey some of my work on the topic, which includes coding for distributed gradient descent, an exciting new framework called Lagrange Coded Computing, and finally, an important extension of Private Information Retrieval called Private Computation.

Back to the index of events