Skip to content (access key 's')
Logo of Technion
Logo of CS Department
Logo of CS4People

The Taub Faculty of Computer Science Events and Talks

Improved Approximation for Two-dimensional Vector Multiple Knapsack
event speaker icon
Tomer Cohen (M.Sc. Thesis Seminar)
event date icon
Tuesday, 08.08.2023, 16:00
event location icon
Zoom Lecture: 94011474168 and Taub 601
event speaker icon
Advisor: Prof. Hadas Shachnai
We study the uniform 2-dimensional vector multiple knapsack (2VMK) problem, a natural variant of multiple knapsack arising in real-world applications such as virtual machine placement. The input for 2VMK is a set of items, each associated with a 2-dimensional weight vector and a positive profit, along with m 2-dimensional bins of uniform (unit) capacity in each dimension. The goal is to find an assignment of a subset of the items to the bins, such that the total weight of items assigned to a single bin is at most one in each dimension, and the total profit is maximized.

Our main result is a (1−ln2−ε)-approximation algorithm for 2VMK, for every fixed ε>0, thus improving the best known ratio of (1−1/e−ε) which follows as a special case from a result of [Fleischer at al., MOR 2011]. Our algorithm relies on an adaptation of the Round&Approx framework of [Bansal et al., SICOMP 2010], originally designed for set covering problems, to maximization problems. The algorithm uses randomized rounding of a configuration-LP solution to assign items to ≈m⋅ln2≈0.693⋅m of the bins, followed by a reduction to the (1-dimensional) Multiple Knapsack problem for assigning items to the remaining bins.