Skip to content (access key 's')
Logo of Technion
Logo of CS Department
Logo of CS4People

The Taub Faculty of Computer Science Events and Talks

Pixel Club: Learning Feature Descriptors
event speaker icon
Alex Bronstein (School of Electrical Engineering, Tel Aviv University)
event date icon
Tuesday, 01.05.2012, 11:30
event location icon
EE Meyer Building 1061
SIFT-like local feature descriptors are ubiquitously employed in such computer vision applications as content-based retrieval, video analysis, copy detection, object recognition, photo-tourism, and 3D reconstruction from multiple views. Feature descriptors can be designed to be invariant to certain classes of photometric and geometric transformations, in particular, affine and intensity scale transformations. However, real transformations that an image can undergo can only be approximately modeled in this way, and thus most descriptors are only approximately invariant in practice. Secondly, descriptors are usually high-dimensional (e.g. SIFT is represented as a 128-dimensional vector). In large-scale retrieval and matching problems, this can pose challenges in storing and retrieving descriptor data. In this talk, we will show how to map the descriptor vectors into the Hamming space, in which the Hamming metric is used to compare the resulting representations. This way, we reduce the size of the descriptors by representing them as short binary strings and learn descriptor invariance from examples.