Skip to content (access key 's')
Logo of Technion
Logo of CS Department
Logo of CS4People

The Taub Faculty of Computer Science Events and Talks

Pixel Club: Joint Embeddings of Shapes and Images via CNN Image Purification
event speaker icon
Yangyan Li (CS, Tel-Aviv University)
event date icon
Tuesday, 31.05.2016, 11:30
event location icon
EE Meyer Building 1061
Both 3D models and 2D images contain a wealth of information about everyday objects in our environment. However, it is difficult to semantically link together these two media forms, even when they feature identical or very similar objects. Real-world images are naturally variable in a number of characteristics such as viewpoint, lighting, background elements, and occlusions. This variability makes it challenging to match images with each other, or with 3D shapes. We propose a joint embedding space populated by both 3D shapes and 2D images, where the distance between embedded entities reflects the similarity between the underlying objects represented by the image or 3D model, unaffected by all the aforementioned nuisance factors. This joint embedding space facilitates comparison between entities of either form, and allows for cross-modality retrieval. We construct the embedding space using an all-pairs 3D shape similarity measure, as 3D shapes are more pure and complete than their appearances in images, leading to more robust distance metrics. We then employ a Convolutional Neural Network (CNN) to "purify" images by muting the distracting factors. The CNN is trained to map an image to a point within the embedding space, such that it is close to a point attributed to a 3D model of a similar object to the one depicted in the image. This purifying capability of the CNN is accomplished with the help of a large amount of training data consisting of images synthesized from 3D shapes. Our deep embedding brings 3D shapes and 2D images into a joint embedding space, where cross-view image retrieval, image-based shape retrieval, as well as shape-based image retrieval tasks are all naturally supported. We evaluate our method on these retrieval.