Events
The Taub Faculty of Computer Science Events and Talks
Yaniv Nemcovsky (M.Sc. Thesis Seminar)
Monday, 29.07.2019, 10:00
The omnipresence of increasingly large deep networks derives primarily from their empirical successes. Indeed, empirical evidence places a strong emphasis on operating at scale, more parameters and layers, in order to help both optimization and generalization. This counter-intuitive trend has eluded theoretical analysis. In this work, we present a PAC-Bayesian generalization bound for the Gaussian dropout that only requires an on-average loss function bound and on-average norm-gradient bounds by relying on log-Sobolev inequalities for Gaussian measures. Our preliminary experimental evaluation shows that our bounds \emph{decrease} when adding more layers or more parameters to the network.