Skip to content (access key 's')
Logo of Technion
Logo of CS Department
Logo of CS4People
News

The Taub Faculty of Computer Science News and Announcements

S126 - Data-Driven Prediction of Embryo Implantation Probability Using IVF Time-lapse Imaging
Tuesday, November 10, 2020
S126 - Data-Driven Prediction of Embryo Implantation Probability Using IVF Time-lapse Imaging

S126 - Data-Driven Prediction of Embryo Implantation Probability Using IVF Time-lapse Imaging
By:
David H. Silver, Martin Feder, Yael Gold-Zamir, Avital L. Polsky, Shahar Rosentraub, Efrat Shachor, Adi Weinberger [Technion CS], Pavlo Mazur, Valery D. Zukin, Alex M. Bronstein [Technion CS].

The process of fertilizing a human egg outside the body in order to help those suffering from infertility to conceive is known as in vitro fertilization (IVF). Despite being the most effective method of assisted reproductive technology (ART), the average success rate of IVF is a mere 20-40%. One step that is critical to the success of the procedure is selecting which embryo to transfer to the patient, a process typically conducted manually and without any universally accepted and standardized criteria. In this paper we describe a novel data-driven system trained to directly predict embryo implantation probability from embryogenesis time-lapse imaging videos. Using retrospectively collected videos from 272 embryos, we demonstrate that, when compared to an external panel of embryologists, our algorithm results in a 12% increase of positive predictive value and a 29% increase of negative predictive value.

Full Article
Hyadean

[Back to the news index]