דלג לתוכן (מקש קיצור 's')
אירועים

אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב

אפשור למידה סקלבילית במודלים גדולים
event speaker icon
ניב גלעדי (הרצאה סמינריונית לדוקטורט)
event date icon
יום שלישי, 04.07.2023, 13:30
event location icon
טאוב 601
event speaker icon
מנחה: Prof. Daniel Soudry
Deep Neural Networks (DNNs) training continues to scale over size and computational footprint, as a result of a higher number of trainable parameters, wider and deeper models, and growing amounts of training data. As improvements in model quality lead over hardware capabilities, this scale-up translates into a need for a growing number of training devices working in tandem, turning distributed training into the standard approach for training DNNs on a large scale. This seminar delves into distributed training, exploring the current solutions and implications for improving scalability. First, we will examine asynchronous training from a dynamical stability perspective, and derive optimal hyperparameters tuning rules. Then, we will look into scalability challenges in synchronous training and suggest a method to improve its robustness. Finally, we will introduce a paradigm of integrating deep learning with physics simulations to improve the scalability of the latter, leading to x4096 theoretical acceleration in physics simulation.