דלג לתוכן (מקש קיצור 's')
אירועים

אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב

מחקרים רחבי היקף של רשתות נוירונים עמוקות בהערכת אי ודאות וגילוי מחלקות מחוץ להתפלגות
event speaker icon
עידו גליל (הרצאה סמינריונית לדוקטורט)
event date icon
יום רביעי, 10.07.2024, 12:30
event location icon
הרצאת זום: 92810808120 וטאוב 9
event speaker icon
מנחה: Prof. Ran El-Yaniv
In this seminar, I will discuss two of my papers (published in ICLR 2023) on uncertainty estimation and class-out-of-distribution detection. We present a novel framework to benchmark the ability of image classifiers to detect class-out-of-distribution (C-OOD) instances (i.e., instances whose true labels do not appear in the training distribution) at various levels of detection difficulty. We apply this technique to ImageNet, and benchmark 500+ pretrained, publicly available, ImageNet-1k classifiers. We then evaluate these classifiers both for their C-OOD detection performance (second paper) and for their uncertainty estimation performance (first paper), i.e., their ranking, calibration, and selective classification performance. This results in a large-scale study that reveals many factors (such as architecture types and training regimes) previously unknown to contribute to performance.