אירועים
אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב
סווסטיק קופרארטי (IAS ואונ' ראטגרס)
יום רביעי, 06.07.2011, 12:30
חדר 337, בניין טאוב למדעי המחשב
We study the complexity of powering in GF(2^n) by constant depth
arithmetic circuits over GF(2) (also known as AC0(parity)). Our study
encompasses basic arithmetic operations such as computing cube-roots
and cubic-residuosity of elements of GF(2^n). Our main result is that
these operations require exponential size circuits.
We also derive strong average-case versions of these results. For example,
we show that no subexponential-size, constant-depth, arithmetic circuit
over GF(2) can correctly compute the cubic residue symbol for more than
1/3 + o(1) fraction of the elements of GF(2^n). As a corollary, we deduce
a character sum bound showing that the cubic residue character over GF(2^n)
is uncorrelated with all degree-d n-variate GF(2) polynomials (viewed as
functions over GF(2^n) in a natural way), provided d << n^{0.1}.
Our proof revisits the classical Razborov-Smolensky method for circuit lower
bounds, and executes an analogue of it in the land of univariate polynomials
over GF(2^n).