אירועים
אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב
רנג'י צ'ן (מדעי המחשב, טכניון)
יום ראשון, 20.01.2013, 13:00
חדר 337, בניין טאוב למדעי המחשב
The Delaunay triangulation and its dual, the Voronoi diagram, are among the most fundamental structures in computational geometry. We show how to localize the Delaunay triangulation of a given planar point set, namely, bound the set of points which are possible Delaunay neighbors of a given point. We then exploit this observation in an algorithm for constructing the Delaunay triangulation (and its dual Voronoi diagram) by computing the Delaunay neighbors (and Voronoi cell) of each point independently. While this does not lead to the fastest serial algorithm possible for Delaunay triangulation, it does lead to an efficient parallelization strategy which achieves almost perfect speedups on multicore machines.