אירועים
אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב
יום רביעי, 12.11.2014, 12:30
Motivated by Internet targeted advertising, we address several ad allocation problems. While prior work has established that these problems admit no randomized online algorithm with competitive ratio better than $1-\frac{1}{e}~63.2%$ [KVV90,MSVV2005], simple heuristics have been observed to perform much better in practice than suggested by these bounds. We explain this phenomenon by studying a generalization of the bounded-degree inputs considered by Buchbinder et al. [BJN2007], graphs which we call $(k,d)-bounded$. In such graphs the maximal degree on the online side is at most $d$ and the minimal degree on the offline side is at least $k$. We prove that for such graphs (and a generalization thereof for the AdWords problem), the natural greedy algorithms for these problems achieve a competitive ratio of $1-\frac{d-1}{k+d-1}$, tending to \emph{one} as $d/k$ tends to zero. We prove that the bound is tight for these algorithms.
Inspired by our tight examples for the performance of greedy algorithms, we develop deterministic primal-dual algorithms for the above problems which achieve competitive ratio of $1-(1-\frac{1}{d})^k>1-\frac{1}{e^{k/d}}$, or \emph{exponentially} better loss as a function of $k/d$. This is strictly better than $1-\frac{1}{e}$ whenever $k\geq d$. We complement our lower bounds with matching upper bounds for the vertex-weighted problem. Finally, we use our deterministic algorithms' dual updates to prove by dual-fitting that simple randomized algorithms, including \textsc{ranking} of Karp et al., achieve the same bounds in expectation as our deterministic algorithms. Our primal-dual algorithms and analysis differ from previous online primal dual-algorithms, both for this problem and in general. Our approach may prove useful in designing theoretically as well practically better algorithms for other "well-behaved" problems.
Joint work with Seffi Naor.