דלג לתוכן (מקש קיצור 's')
אירועים

אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב

event speaker icon
עודד גרין (מכון ג'ורג'יה)
event date icon
יום רביעי, 24.05.2017, 11:30
event location icon
טאוב 301
Sparse data computations are ubiquitous in science and engineering. Two widely used applications requiring sparse data computations are graph algorithms and linear algebra operations such as Sparse Matrix-Vector Multiplication (SpMV). In contrast to their dense data counterparts, sparse-data computations have less locality and more irregularity in their execution - making them significantly more challenging to optimize. While there are several existing formats for sparse data representations, most of these formats are restricted to static data sets. This means that these representations and their implementations do not support changes to the original data. For graphs, this means that topology changes are not possible. For matrices, this means adding a perturbation to the original input is non-trivial.

In today's talk, I will present cuSTINGER - a dynamic graph data structure for the GPU. This talk will partially focus on the internals of the data structure and some of its design considerations. cuSTINGER will be compared with Compressed Sparse Row (CSR) — a widely used static graph and matrix data representation for sparse inputs. This comparison will include a performance analyis of the data structure itself as well as higher level data analytics implemented using the data structure. I will show that the new data structure has a relatively low-overhead in comparison to CSR. Yet unlike CSR, our new data structure is flexible and can grow for indefinite amount of time. I will then show that the data structure can process tens of millions of updates per second - a rate that exceeds many real world applications making it extremely useful.

In the second part of my talk, I will elaborate on the programming model for cuSTINGER. My research team’s big goal is to enable simple implementation of high-performance, scalable, dynamic graph analytics on the GPU for all users - including none-GPU experts. To limit the amount of GPU code that users need to write by themselves, cuSTINGER offers a small set of optimized operators for traversing graph vertices and edges. An additional design goal is to ensure that static graph algorithms, such as breath-first search and connected components, will also perform well in this library. I will show how these algorithms can be implemented in less than 15 lines of code through the use of these operators. I will then compare the performance of our cuSTINGER implementations with the static graph implementations in Gunrock — a highly tuned GPU graph library. Our current implementations are usually upto 30% slower or 20% faster than Gunrock, depending on the input and algorithm. Finally, I will show some performance results for a novel triangle counting algorithm for dynamic graphs which sustains millions of updates per second.

Bio:
Oded Green is a research scientist at the Georgia Institute of Technology (Georgia Tech) in Computational Sciences and Engineering, where he also received his PhD. Oded received both his MSc in electrical engineering and his BSc in computer engineering from Technion – Israel Institute of Technology. Prior to coming to Georgia Tech, Oded spent some time working as the Chief Operating Officer and a research scientist for ArrayFire (Atlanta, GA) where he was responsible for the company’s product management and research directions. Oded's research primarily focuses on improving the performance and scalability of large-scale graph analytics on dynamic graph using a wide range of high-performance computational platforms and by designing efficient algorithms and data structures