דלג לתוכן (מקש קיצור 's')
אירועים

אירועים והרצאות בפקולטה למדעי המחשב ע"ש הנרי ומרילין טאוב

השוואת ביצועים של מודלי יסוד בדרגה קלינית באופתלמולוגיה לזיהוי AMD
event speaker icon
בנימין כהן (הרצאה סמינריונית למגיסטר)
event date icon
יום חמישי, 24.04.2025, 12:30
event location icon
הנדסה ביו-רפואית חדר 201 & זום
event speaker icon
מנחה: Assoc. Prof. Joachim Behar & Dr. Eran Berkowitz

Self-supervised learning (SSL) has enabled Vision Transformers (ViTs) to learn robust representations from large-scale natural image datasets, enhancing their generalization across domains. In retinal imaging, foundation models pretrained on either natural or ophthalmic data have shown promise, but the benefits of in-domain pretraining remain uncertain. To investigate this, we benchmark six SSL-pretrained ViTs on seven digital fundus image (DFI) datasets totaling 70,000 expert-annotated images for the task of moderate-to-late age-related macular degeneration (AMD) identification. Our results show that iBOT pretrained on natural images, achieves the highest out-of-distribution generalization, with AUROCs of 0.80–0.97, outperforming domain-specific models, which achieved AUROCs of 0.78–0.96 and a baseline ViT-L with no pretraining, which achieved AUROC of 0.68-0.91. These findings highlight the value of foundation models in improving AMD identification, and challenge the assumption that in-domain pretraining is necessary. Furthermore, we release BRAMD, an open-access dataset (n=587) of DFIs with AMD labels from Brazil.